Photo AI

Complete the table below, giving the missing value of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 4

Question icon

Question 5

Complete-the-table-below,-giving-the-missing-value-of-y-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 4.png

Complete the table below, giving the missing value of y to 3 decimal places. | x | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |---|---|-----|---|-----|---|-----|---| | y | 5... show full transcript

Worked Solution & Example Answer:Complete the table below, giving the missing value of y to 3 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 4

Step 1

Complete the table below, giving the missing value of y to 3 decimal places.

96%

114 rated

Answer

To find the missing value of y when x=1.5x = 1.5:

  1. Substitute x=1.5x = 1.5 into the equation:
    y=5(1.52+1)=5(2.25+1)=53.25=1.538y = \frac{5}{(1.5^2 + 1)} = \frac{5}{(2.25 + 1)} = \frac{5}{3.25} = 1.538.

Thus, the completed table is:

x00.511.522.53
y542.511.5380.6900.5

Step 2

Use the trapezium rule, with all the values of y from your table, to find an approximate value for the area of R.

99%

104 rated

Answer

Using the trapezium rule:

Ah2(f(x0)+2f(x1)+2f(x2)+2f(x3)+2f(x4)+f(x5))A \approx \frac{h}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + f(x_5)) where h=0.5h = 0.5, the width of each segment.

Calculating:

A0.52(5+2(4)+2(2.5)+2(1.538)+2(0.690)+0.5)A \approx \frac{0.5}{2} \left(5 + 2(4) + 2(2.5) + 2(1.538) + 2(0.690) + 0.5 \right)

Simplifying:

  1. Total the values: 5+2(4)+2(2.5)+2(1.538)+2(0.690)+0.5=6.2395 + 2(4) + 2(2.5) + 2(1.538) + 2(0.690) + 0.5 = 6.239
  2. Multiply and find: A0.5×6.239=3.11956.239A \approx 0.5 \times 6.239 = 3.1195 \approx 6.239

Step 3

Use your answer to part (b) to find an approximate value for $ \int_{0}^{3} \frac{4+5}{(x^2+1)} dx $ giving your answer to 2 decimal places.

96%

101 rated

Answer

For the integral:

The required integral can be rewritten as: 034+5(x2+1)dx=03(4(x2+1)+5(x2+1))dx\int_{0}^{3} \frac{4 + 5}{(x^2+1)} dx = \int_{0}^{3} \left(\frac{4}{(x^2+1)} + \frac{5}{(x^2+1)}\right) dx

Using the trapezium rule from part (b): 6.239+12=18.239\approx 6.239 + 12 = 18.239

Thus, the approximate value of the integral is:

034+5(x2+1)dx18.24\int_{0}^{3} \frac{4+5}{(x^2+1)} dx \approx 18.24

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;