Photo AI

f(x) = \frac{3x - 1}{(1 - 2x)^2} \\[ |x| < \frac{1}{2} \\ Given that, for x ≠ \frac{1}{2}, \frac{3x - 1}{(1 - 2x)^2} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2}, where A and B are constants, (a) find the values of A and B - Edexcel - A-Level Maths Pure - Question 3 - 2006 - Paper 6

Question icon

Question 3

f(x)-=-\frac{3x---1}{(1---2x)^2}-\\[-|x|-<-\frac{1}{2}-\\--Given-that,-for-x-≠-\frac{1}{2},-\frac{3x---1}{(1---2x)^2}-=-\frac{A}{(1---2x)}-+-\frac{B}{(1---2x)^2},-where-A-and-B-are-constants,----(a)-find-the-values-of-A-and-B-Edexcel-A-Level Maths Pure-Question 3-2006-Paper 6.png

f(x) = \frac{3x - 1}{(1 - 2x)^2} \\[ |x| < \frac{1}{2} \\ Given that, for x ≠ \frac{1}{2}, \frac{3x - 1}{(1 - 2x)^2} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2}, wh... show full transcript

Worked Solution & Example Answer:f(x) = \frac{3x - 1}{(1 - 2x)^2} \\[ |x| < \frac{1}{2} \\ Given that, for x ≠ \frac{1}{2}, \frac{3x - 1}{(1 - 2x)^2} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2}, where A and B are constants, (a) find the values of A and B - Edexcel - A-Level Maths Pure - Question 3 - 2006 - Paper 6

Step 1

find the values of A and B.

96%

114 rated

Answer

To find the constants A and B, we start by equating the two sides of the given equation:

3x1=A(12x)+B3x - 1 = A(1 - 2x) + B

Expanding the right-hand side gives us:

3x1=A2Ax+B3x - 1 = A - 2Ax + B

Rearranging terms, we can group like terms:

(3+2A)x+(A+B)=0 (3 + 2A)x + (A + B) = 0

To satisfy the identity for all x, we need the coefficients of like terms to be equal, giving us:

  1. For the coefficient of x: A = -\frac{3}{2}$$
  2. For the constant term: 1=A+B-1 = A + B Substituting A, we get: B = -1 + \frac{3}{2} = \frac{1}{2}$$

Thus, the values are:

A=32,B=12A = -\frac{3}{2}, B = \frac{1}{2}

Step 2

Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x³, simplifying each term.

99%

104 rated

Answer

To find the series expansion of f(x), we can substitute the values of A and B back into the expression derived:

Replacing, we have:

f(x)=3x1(12x)2=32(12x)+12(12x)2f(x) = \frac{3x - 1}{(1 - 2x)^2} = \frac{-\frac{3}{2}}{(1 - 2x)} + \frac{\frac{1}{2}}{(1 - 2x)^2}

Next, we apply the binomial series expansion for each term:

  1. For (\frac{1}{1 - 2x}): 112x=1+2x+4x2+8x3+\frac{1}{1 - 2x} = 1 + 2x + 4x^2 + 8x^3 + \cdots

  2. For (\frac{1}{(1 - 2x)^2}): The expansion is given by the formula: ( (1 - 2x)^{-2} = \sum_{n=0}^{\infty} \binom{n + 1}{1}(2x)^n = 1 + 4x + 12x^2 + 32x^3 + \cdots )

Combining these expansions, we get:

f(x)=32(1+2x+4x2+8x3)+12(1+4x+12x2+32x3)f(x) = -\frac{3}{2} (1 + 2x + 4x^2 + 8x^3) + \frac{1}{2} (1 + 4x + 12x^2 + 32x^3)

Simplifying each term:

  • For the constant term: -32+12=1 -\frac{3}{2} + \frac{1}{2} = -1
  • For x term: -3+2=1 -3 + 2 = -1
  • For x² term: -6+6=0 -6 + 6 = 0
  • For x³ term: -12+16=4 -12 + 16 = 4

Therefore, the series expansion of f(x) up to the term in x³ is:

f(x)=1x+0x2+4x3+ f(x) = -1 - x + 0x^2 + 4x^3 + \cdots

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;