Photo AI

Find algebraically the exact solutions to the equations (a) $ ext{ln}(4 - 2x) + ext{ln}(9 - 3x) = 2 ext{ln}(x + 1),$ $-1 < x < 2$ - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 7

Question icon

Question 7

Find-algebraically-the-exact-solutions-to-the-equations--(a)-$-ext{ln}(4---2x)-+--ext{ln}(9---3x)-=-2-ext{ln}(x-+-1),$--$-1-<-x-<-2$-Edexcel-A-Level Maths Pure-Question 7-2013-Paper 7.png

Find algebraically the exact solutions to the equations (a) $ ext{ln}(4 - 2x) + ext{ln}(9 - 3x) = 2 ext{ln}(x + 1),$ $-1 < x < 2$. (b) $2^x e^{3x + 1} = 10$ Giv... show full transcript

Worked Solution & Example Answer:Find algebraically the exact solutions to the equations (a) $ ext{ln}(4 - 2x) + ext{ln}(9 - 3x) = 2 ext{ln}(x + 1),$ $-1 < x < 2$ - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 7

Step 1

(a) Solve $ ext{ln}(4 - 2x) + ext{ln}(9 - 3x) = 2 ext{ln}(x + 1)$

96%

114 rated

Answer

To solve the equation, we will use the properties of logarithms. The left-hand side can be rewritten using the product rule of logarithms:

extln((42x)(93x))=2extln(x+1) ext{ln}((4 - 2x)(9 - 3x)) = 2 ext{ln}(x + 1)

Using the power rule, we rewrite the equation as:

extln((42x)(93x))=extln((x+1)2) ext{ln}((4 - 2x)(9 - 3x)) = ext{ln}((x + 1)^2)

Next, we can remove the logarithms by exponentiating both sides:

(42x)(93x)=(x+1)2(4 - 2x)(9 - 3x) = (x + 1)^2

Expanding both sides yields:

3630x6x+6x2=x2+2x+136 - 30x - 6x + 6x^2 = x^2 + 2x + 1

This simplifies to:

6x232x+35=06x^2 - 32x + 35 = 0

We now apply the quadratic formula, where a=6a = 6, b=32b = -32, and c=35c = 35:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting the values:

x=32±(32)2463526x = \frac{32 \pm \sqrt{(-32)^2 - 4 \cdot 6 \cdot 35}}{2 \cdot 6}
x=32±102484012x = \frac{32 \pm \sqrt{1024 - 840}}{12}
x=32±18412x = \frac{32 \pm \sqrt{184}}{12}
x=32±24612x = \frac{32 \pm 2\sqrt{46}}{12}
x=16±466x = \frac{16 \pm \sqrt{46}}{6}

Examining the valid range of solutions 1<x<2-1 < x < 2, we find that:

x=16+466extisvalid,andx=16466extisnotvalid.x = \frac{16 + \sqrt{46}}{6} ext{ is valid, and } x = \frac{16 - \sqrt{46}}{6} ext{ is not valid.}

Step 2

(b) Give your answer to (b) in the form $\frac{a + \ln b}{c + \ln d}$

99%

104 rated

Answer

Starting with the equation:

2xe3x+1=102^x e^{3x + 1} = 10

We take the natural logarithm on both sides:

ln(2x)+ln(e3x+1)=ln(10)\ln(2^x) + \ln(e^{3x + 1}) = \ln(10)

This can be simplified:

xln(2)+(3x+1)=ln(10)x \ln(2) + (3x + 1) = \ln(10)

Rearranging gives us:

(xln(2)+3x)=ln(10)1(x \ln(2) + 3x) = \ln(10) - 1

Combining xx terms:

x(ln(2)+3)=ln(10)1x(\ln(2) + 3) = \ln(10) - 1

Solving for xx:

x=ln(10)1ln(2)+3x = \frac{\ln(10) - 1}{\ln(2) + 3}

Thus, in the requested form, where we express this as:

x=1+ln(10)3+ln(2)x = \frac{-1 + \ln(10)}{3 + \ln(2)}

In this case: a=1,b=10,c=3,d=2a = -1, b = 10, c = 3, d = 2.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;