Photo AI
Question 9
Given that 6x + 3x^{rac{5}{2}} can be written in the form 6x^{p} + 3x^{q}, a) write down the value of p and the value of q. Given that \( \frac{dy}{dx} = \frac{6x... show full transcript
Step 1
Step 2
Answer
Starting with ( \frac{dy}{dx} = \frac{6x + 3x^{\frac{5}{2}}}{\sqrt{x}} ), we can break this down:
[ \frac{dy}{dx} = \frac{6x}{\sqrt{x}} + \frac{3x^{\frac{5}{2}}}{\sqrt{x}} = 6x^{\frac{1}{2}} + 3x^{2} = 6\sqrt{x} + 3x^{2} ]
Now, we integrate ( dy = (6\sqrt{x} + 3x^{2})dx ):
[ y = \int (6\sqrt{x} + 3x^{2}) , dx = 6 \cdot \frac{2}{3} x^{\frac{3}{2}} + 3 \cdot \frac{1}{3} x^{3} + C = 4x^{\frac{3}{2}} + x^{3} + C ]
Next, we apply the initial condition ( y = 90 ) when ( x = 4 ):
[ 90 = 4(4^{\frac{3}{2}}) + (4^{3}) + C ]
Calculating each term:
Putting it all together: [ 90 = 32 + 64 + C \Rightarrow C = 90 - 96 = -6 ]
Thus, we have: [ y = 4x^{\frac{3}{2}} + x^{3} - 6 ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered