Photo AI

4. (a) Differentiate with respect to x (i) $x^{2}e^{x^{2}}$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 5

Question icon

Question 5

4.-(a)-Differentiate-with-respect-to-x--(i)-$x^{2}e^{x^{2}}$-Edexcel-A-Level Maths Pure-Question 5-2006-Paper 5.png

4. (a) Differentiate with respect to x (i) $x^{2}e^{x^{2}}$. (ii) \(\frac{\cos(2x)}{3x} \). (b) Given that $x = 4 \sin(2y + 6)$, find \(\frac{dy}{dx}\) in terms... show full transcript

Worked Solution & Example Answer:4. (a) Differentiate with respect to x (i) $x^{2}e^{x^{2}}$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 5

Step 1

(i) $x^{2}e^{x^{2}}$

96%

114 rated

Answer

To differentiate the function (f(x) = x^2 e^{x^2}), we will apply the product rule. The product rule states that if (u = x^2) and (v = e^{x^2}), then:

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}

Calculating the derivatives:

  • (\frac{du}{dx} = 2x)
  • (\frac{dv}{dx} = e^{x^2} \cdot 2x) by using the chain rule.

Substituting these into the product rule gives:

ddx(x2ex2)=x2(2xex2)+ex2(2x)=3xex2\frac{d}{dx}(x^2 e^{x^2}) = x^2(2xe^{x^2}) + e^{x^2}(2x) = 3xe^{x^2}

Step 2

(ii) \(\frac{\cos(2x)}{3x}\)

99%

104 rated

Answer

To differentiate (y = \frac{\cos(2x)}{3x}), we again apply the quotient rule. If (u = \cos(2x)) and (v = 3x), then:

dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}

Calculating the derivatives:

  • (\frac{du}{dx} = -2\sin(2x)) using the chain rule.
  • (\frac{dv}{dx} = 3).

Substituting these values:

dydx=3x(2sin(2x))cos(2x)(3)(3x)2=6xsin(2x)3cos(2x)9x2\frac{dy}{dx} = \frac{3x(-2\sin(2x)) - \cos(2x)(3)}{(3x)^2} = \frac{-6x\sin(2x) - 3\cos(2x)}{9x^2}

Step 3

Given that $x = 4 \sin(2y + 6)$, find \(\frac{dy}{dx}\) in terms of x.

96%

101 rated

Answer

To find (\frac{dy}{dx}), we will use implicit differentiation. Starting from (x = 4 \sin(2y + 6)), we differentiate both sides with respect to x:

  1. The left-hand side: (\frac{dx}{dx} = 1).
  2. The right-hand side using the chain rule:
    • Let (u = 2y + 6), then (\frac{du}{dx} = 2\frac{dy}{dx}), so: dxdx=4cos(2y+6)2dydx    1=8cos(2y+6)dydx\frac{dx}{dx} = 4 \cos(2y + 6) \cdot 2 \frac{dy}{dx} \implies 1 = 8 \cos(2y + 6) \frac{dy}{dx}

Solving for (\frac{dy}{dx}) gives:

dydx=18cos(2y+6)\frac{dy}{dx} = \frac{1}{8 \cos(2y + 6)}

Next, from the original equation for (x), we can express (\cos(2y + 6)) in terms of x:

Using (4 \sin(2y + 6) = x), we apply the Pythagorean identity to obtain:

cos(2y+6)=1sin2(2y+6)=1(x4)2    dydx=1216x2\cos(2y + 6) = \sqrt{1 - \sin^2(2y + 6)} = \sqrt{1 - \left( \frac{x}{4} \right)^2} \implies \frac{dy}{dx} = \frac{1}{2 \sqrt{16 - x^2}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;