To solve the integral, we first plug in f(θ):
∫02πθf(θ)dθ=∫02πθ(21−27cos2θ)dθ
This can be split into two integrals:
=21∫02πθdθ−27∫02πθcos2θdθ
For the first integral:
∫02πθdθ=[2θ2]02π=2(2π)2=8π2
Now for the second integral, we can use integration by parts:
Let:
- u=θ
- dv=cos2θdθ
Then:
- du=dθ
- v=21sin2θ
By applying integration by parts:
∫udv=uv−∫vdu
Thus:
∫θcos2θdθ=[2θsin2θ]02π−∫02π21sin2θdθ
The boundary term evaluates to 0:
[2θsin2θ]02π=0
Next, we need to evaluate ∫02π21sin2θdθ:
This gives:
∫sin2θdθ=−21cos2θ
So:
∫02π21sin2θdθ=[−41cos2θ]02π=−41(cosπ−cos0)=−41(−1−1)=21
Thus:
∫θcos2θdθ=0−21=−21
Putting everything back together yields:
∫02πθf(θ)dθ=21⋅8π2−27⋅(−21)
This simplifies to:
=16π2+47=16π2+28
Therefore, the exact value is:
∫02πθf(θ)dθ=16π2+28.