Photo AI

Consider the function: $$f(\theta) = 4\cos^2\theta - 3\sin^2\theta$$ (a) Show that $$f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$$ (b) Hence, using calculus, find the exact value of $$\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta.$$ - Edexcel - A-Level Maths Pure - Question 7 - 2010 - Paper 6

Question icon

Question 7

Consider-the-function:----$$f(\theta)-=-4\cos^2\theta---3\sin^2\theta$$----(a)-Show-that---$$f(\theta)-=-\frac{1}{2}---\frac{7}{2}\cos-2\theta.$$----(b)-Hence,-using-calculus,-find-the-exact-value-of---$$\int_0^{\frac{\pi}{2}}-\theta-f(\theta)-d\theta.$$-Edexcel-A-Level Maths Pure-Question 7-2010-Paper 6.png

Consider the function: $$f(\theta) = 4\cos^2\theta - 3\sin^2\theta$$ (a) Show that $$f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$$ (b) Hence, using... show full transcript

Worked Solution & Example Answer:Consider the function: $$f(\theta) = 4\cos^2\theta - 3\sin^2\theta$$ (a) Show that $$f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$$ (b) Hence, using calculus, find the exact value of $$\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta.$$ - Edexcel - A-Level Maths Pure - Question 7 - 2010 - Paper 6

Step 1

Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta$

96%

114 rated

Answer

To prove this, we will manipulate the initial expression for f(θ)f(\theta):

f(θ)=4cos2θ3sin2θf(\theta) = 4\cos^2\theta - 3\sin^2\theta
We can use the identity:
cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos 2\theta}{2}
sin2θ=1cos2θ2\sin^2\theta = \frac{1 - \cos 2\theta}{2}
Substituting these into f(θ)f(\theta) gives:

f(θ)=4(1+cos2θ2)3(1cos2θ2)f(\theta) = 4\left(\frac{1 + \cos 2\theta}{2}\right) - 3\left(\frac{1 - \cos 2\theta}{2}\right)

Upon simplifying, we obtain:

f(θ)=2(1+cos2θ)32(1cos2θ)f(\theta) = 2(1 + \cos 2\theta) - \frac{3}{2}(1 - \cos 2\theta)
=2+2cos2θ32+32cos2θ= 2 + 2\cos 2\theta - \frac{3}{2} + \frac{3}{2}\cos 2\theta
=(232)+(2+32)cos2θ= \left(2 - \frac{3}{2}\right) + \left(2 + \frac{3}{2}\right)\cos 2\theta
=12+72cos2θ= \frac{1}{2} + \frac{7}{2}\cos 2\theta
Thus, we have shown that:

f(θ)=1272cos2θ.f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.

Step 2

Hence, using calculus, find the exact value of $\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta$

99%

104 rated

Answer

To solve the integral, we first plug in f(θ)f(\theta):

0π2θf(θ)dθ=0π2θ(1272cos2θ)dθ\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta = \int_0^{\frac{\pi}{2}} \theta \left(\frac{1}{2} - \frac{7}{2}\cos 2\theta\right) d\theta
This can be split into two integrals:

=120π2θdθ720π2θcos2θdθ= \frac{1}{2}\int_0^{\frac{\pi}{2}} \theta d\theta - \frac{7}{2}\int_0^{\frac{\pi}{2}} \theta \cos 2\theta d\theta
For the first integral:

0π2θdθ=[θ22]0π2=(π2)22=π28\int_0^{\frac{\pi}{2}} \theta d\theta = \left[\frac{\theta^2}{2}\right]_0^{\frac{\pi}{2}} = \frac{\left(\frac{\pi}{2}\right)^2}{2} = \frac{\pi^2}{8}

Now for the second integral, we can use integration by parts: Let:

  • u=θu = \theta
  • dv=cos2θdθdv = \cos 2\theta d\theta
    Then:
  • du=dθdu = d\theta
  • v=12sin2θv = \frac{1}{2}\sin 2\theta
    By applying integration by parts:

udv=uvvdu\int u \, dv = uv - \int v \, du

Thus:

θcos2θdθ=[θ2sin2θ]0π20π212sin2θdθ\int \theta \cos 2\theta d\theta = \left[\frac{\theta}{2}\sin 2\theta\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{1}{2}\sin 2\theta d\theta
The boundary term evaluates to 0:

[θ2sin2θ]0π2=0\left[\frac{\theta}{2}\sin 2\theta\right]_0^{\frac{\pi}{2}} = 0
Next, we need to evaluate 0π212sin2θdθ\int_0^{\frac{\pi}{2}} \frac{1}{2}\sin 2\theta d\theta:

This gives: sin2θdθ=12cos2θ\int \sin 2\theta d\theta = -\frac{1}{2}\cos 2\theta
So: 0π212sin2θdθ=[14cos2θ]0π2=14(cosπcos0)=14(11)=12\int_0^{\frac{\pi}{2}} \frac{1}{2}\sin 2\theta d\theta = \left[-\frac{1}{4}\cos 2\theta\right]_0^{\frac{\pi}{2}} = -\frac{1}{4}(\cos\pi - \cos 0) = -\frac{1}{4}(-1 - 1) = \frac{1}{2}
Thus:

θcos2θdθ=012=12\int \theta \cos 2\theta d\theta = 0 - \frac{1}{2} = -\frac{1}{2}
Putting everything back together yields:

0π2θf(θ)dθ=12π2872(12)\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta = \frac{1}{2}\cdot\frac{\pi^2}{8} - \frac{7}{2}\cdot(-\frac{1}{2})
This simplifies to:

=π216+74=π2+2816= \frac{\pi^2}{16} + \frac{7}{4} = \frac{\pi^2 + 28}{16}
Therefore, the exact value is:

0π2θf(θ)dθ=π2+2816.\int_0^{\frac{\pi}{2}} \theta f(\theta) d\theta = \frac{\pi^2 + 28}{16}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;