Photo AI

The function g is defined by $$g(x)=\frac{3\ln(x)-7}{\ln(x)-2}, \quad x > 0, \quad x \neq k$$ where k is a constant - Edexcel - A-Level Maths Pure - Question 14 - 2020 - Paper 2

Question icon

Question 14

The-function-g-is-defined-by--$$g(x)=\frac{3\ln(x)-7}{\ln(x)-2},-\quad-x->-0,-\quad-x-\neq-k$$--where-k-is-a-constant-Edexcel-A-Level Maths Pure-Question 14-2020-Paper 2.png

The function g is defined by $$g(x)=\frac{3\ln(x)-7}{\ln(x)-2}, \quad x > 0, \quad x \neq k$$ where k is a constant. (a) Deduce the value of k. (b) Prove that $$... show full transcript

Worked Solution & Example Answer:The function g is defined by $$g(x)=\frac{3\ln(x)-7}{\ln(x)-2}, \quad x > 0, \quad x \neq k$$ where k is a constant - Edexcel - A-Level Maths Pure - Question 14 - 2020 - Paper 2

Step 1

Deduce the value of k.

96%

114 rated

Answer

To deduce the value of k, we need to simplify the condition given for g(x). We have:

g(x)=3ln(x)7ln(x)2g(x)=\frac{3\ln(x)-7}{\ln(x)-2}

To ensure that the function is well-defined, the denominator cannot be zero:

ln(x)20\ln(x) - 2 \neq 0

Solving for x gives:

ln(x)2xe2\ln(x) \neq 2 \Rightarrow x \neq e^2

Thus, we conclude that:

k=e2k = e^2.

Step 2

Prove that g'(x) > 0

99%

104 rated

Answer

To prove that g(x)>0g'(x) > 0 for all values of x in the domain, we first differentiate g(x) using the quotient rule:

g(x)=(ln(x)2)(3(1x)0)(3ln(x)7)(1x)(ln(x)2)2g'(x) = \frac{(\ln(x) - 2)(3(\frac{1}{x}) - 0) - (3\ln(x) - 7)(\frac{1}{x})}{(\ln(x) - 2)^2}

After simplifying, we find:

g(x)=(33ln(x)+7)(1/x)(ln(x)2)2g'(x) = \frac{(3 - 3\ln(x) + 7)(1/x)}{(\ln(x) - 2)^2}

To show that g(x)>0g'(x) > 0, we need:

33ln(x)+7>03 - 3\ln(x) + 7 > 0

which simplifies to:

10>3ln(x)ln(x)<10310 > 3\ln(x) \Rightarrow \ln(x) < \frac{10}{3}

Since x > 0, the inequality holds for all x in the domain of g, thereby proving g(x)>0g'(x) > 0.

Step 3

Find the range of values of a for which g(a) > 0

96%

101 rated

Answer

To find the range of values of a for which g(a)>0g(a) > 0, we first set up the inequality:

3ln(a)7ln(a)2>0\frac{3\ln(a) - 7}{\ln(a) - 2} > 0

This implies that:

  1. The numerator must be positive: 3ln(a)7>0ln(a)>73a>e7/33\ln(a) - 7 > 0 \Rightarrow \ln(a) > \frac{7}{3} \Rightarrow a > e^{7/3}

  2. The denominator must be positive: ln(a)2>0ln(a)>2a>e2\ln(a) - 2 > 0 \Rightarrow \ln(a) > 2 \Rightarrow a > e^2

Combining these inequalities gives:

a>e7/3a > e^{7/3}

Thus, the range of values is:

a(e7/3,)a \in (e^{7/3}, \infty).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;