Photo AI

3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 7

Question icon

Question 5

3.-(a)-Find-\(-\int-x-\cos-2x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 5-2007-Paper 7.png

3. (a) Find \( \int x \cos 2x \, dx \). (b) Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^2 x \, dx \).

Worked Solution & Example Answer:3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 7

Step 1

Find \( \int x \cos 2x \, dx \)

96%

114 rated

Answer

To solve ( \int x \cos 2x , dx ), we will use the method of integration by parts. Let:

  • ( u = x )
  • ( dv = \cos 2x , dx )

This gives us:

  • ( du = dx )
  • ( v = \frac{1}{2} \sin 2x )

Applying integration by parts, we have:

udv=uvvdu\int u \, dv = uv - \int v \, du

Thus,

xcos2xdx=x12sin2x12sin2xdx\int x \cos 2x \, dx = x \cdot \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \, dx

Now, we will evaluate the remaining integral:

sin2xdx=12cos2x+c\int \sin 2x \, dx = -\frac{1}{2} \cos 2x + c

So, substituting back, we get:

xcos2xdx=12xsin2x+14cos2x+c\int x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c

Step 2

Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^2 x \, dx \)

99%

104 rated

Answer

Using the identity ( \cos 2x = 2 \cos^2 x - 1 ), we can express ( \int x \cos^2 x , dx ) in terms of our previous result.

First, rewrite the integral as:

xcos2xdx=x(cos2x+12)dx=12xcos2xdx+12xdx\int x \cos^2 x \, dx = \int x \left( \frac{\cos 2x + 1}{2} \right) dx = \frac{1}{2} \int x \cos 2x \, dx + \frac{1}{2} \int x \, dx

We know from part (a):

xcos2xdx=12xsin2x+14cos2x+c\int x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c

Now, substituting this back, we find:

xcos2xdx=12(12xsin2x+14cos2x)+14x2+c\int x \cos^2 x \, dx = \frac{1}{2} \left( \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right) + \frac{1}{4} x^2 + c

Thus,

=14xsin2x+18cos2x+14x2+c= \frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x + \frac{1}{4} x^2 + c

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;