Photo AI

6. (a) Solve, for -180° ≤ θ ≤ 180°, the equation 5 sin 2θ = 9 tan θ giving your answers, where necessary, to one decimal place - Edexcel - A-Level Maths Pure - Question 7 - 2019 - Paper 2

Question icon

Question 7

6.-(a)-Solve,-for--180°-≤-θ-≤-180°,-the-equation--5-sin-2θ-=-9-tan-θ--giving-your-answers,-where-necessary,-to-one-decimal-place-Edexcel-A-Level Maths Pure-Question 7-2019-Paper 2.png

6. (a) Solve, for -180° ≤ θ ≤ 180°, the equation 5 sin 2θ = 9 tan θ giving your answers, where necessary, to one decimal place. [Solutions based entirely on graph... show full transcript

Worked Solution & Example Answer:6. (a) Solve, for -180° ≤ θ ≤ 180°, the equation 5 sin 2θ = 9 tan θ giving your answers, where necessary, to one decimal place - Edexcel - A-Level Maths Pure - Question 7 - 2019 - Paper 2

Step 1

Solve, for -180° ≤ θ ≤ 180°, the equation 5 sin 2θ = 9 tan θ

96%

114 rated

Answer

To solve the equation, we start by rewriting it in a simpler form. We know:

5extsin(2heta)=9exttan(heta)5 ext{sin}(2 heta) = 9 ext{tan}( heta)

Using the identity for sin(2θ), we have:

extsin(2heta)=2extsin(heta)extcos(heta) ext{sin}(2 heta) = 2 ext{sin}( heta) ext{cos}( heta)

Substituting this into the equation gives:

5(2 ext{sin}( heta) ext{cos}( heta)) = 9 rac{ ext{sin}( heta)}{ ext{cos}( heta)}

Simplifying, we get:

10 ext{sin}( heta) ext{cos}( heta) = rac{9 ext{sin}( heta)}{ ext{cos}( heta)}

Assuming ( ext{sin}( heta) \neq 0 ), we can divide both sides by ( ext{sin}( heta) ) leading to:

10extcos2(heta)=910 ext{cos}^2( heta) = 9

From this, we have:

extcos2(heta)=0.9 ext{cos}^2( heta) = 0.9

Taking the square root:

ext{cos}( heta) = rac{3}{ ext{sqrt}(10)} ext{ or } ext{cos}( heta) = - rac{3}{ ext{sqrt}(10)}

Now, we find θ for both cases. Using the arccosine function:

For ( ext{cos}( heta) = rac{3}{ ext{sqrt}(10)} ):

  • One solution is ( heta = 18.4° )
  • The second solution, considering the cosine function is even, is ( heta = -18.4° )

For ( ext{cos}( heta) = - rac{3}{ ext{sqrt}(10)} ):

  • This provides solutions in the second and third quadrants:
    • The solution in the second quadrant is ( heta = 180° - 18.4° = 161.6° )
    • The solution in the third quadrant is ( heta = 180° + 18.4° = 198.4° ) (not in range)

Thus, valid solutions are ( heta = 18.4°, -18.4°, 161.6° ).

Step 2

Deduce the smallest positive solution to the equation 5 sin(2x - 50°) = 9 tan(x - 25°)

99%

104 rated

Answer

To find the smallest positive solution, we analyze the provided equation:

5extsin(2x50°)=9exttan(x25°)5 ext{sin}(2x - 50°) = 9 ext{tan}(x - 25°)

Using the identity for sin(2x), we can rewrite it as:

extsin(2x50°)=2extsin(x25°)extcos(x25°) ext{sin}(2x - 50°) = 2 ext{sin}(x-25°) ext{cos}(x-25°)

Thus, substituting, we get:

10 ext{sin}(x-25°) ext{cos}(x-25°) = 9 rac{ ext{sin}(x-25°)}{ ext{cos}(x-25°)}

Assuming ( ext{sin}(x-25°) \neq 0 ) (as above), we find:

Simplify:

10extcos2(x25°)=910 ext{cos}^2(x-25°) = 9

Therefore,

extcos2(x25°)=0.9 ext{cos}^2(x-25°) = 0.9

Taking the square root:

ext{cos}(x-25°) = rac{3}{ ext{sqrt}(10)} \text{ or } - rac{3}{ ext{sqrt}(10)}

For positive ( x ):

  1. When ( ext{cos}(x-25°) = rac{3}{ ext{sqrt}(10)} ):
    • We calculate: ( x - 25° = 18.4° ) ( x = 43.4° )
  2. When ( ext{cos}(x-25°) = - rac{3}{ ext{sqrt}(10)} ):
    • Solution in second quadrant gives:
    • ( x - 25° = 180° - 18.4° )
    • So, ( x = 180° - 18.4° + 25° = 186.6° ) (not valid, needs to be smallest)

Thus, the smallest positive solution is:

x=43.4°x = 43.4°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;