Photo AI

3. (a) Find the first 4 terms of the binomial expansion, in ascending powers of $x$, of $\left( 1+\frac{x}{4} \right)^{8}$ giving each term in its simplest form - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 4

Question icon

Question 4

3.-(a)-Find-the-first-4-terms-of-the-binomial-expansion,-in-ascending-powers-of-$x$,-of--$\left(-1+\frac{x}{4}-\right)^{8}$-giving-each-term-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 4-2012-Paper 4.png

3. (a) Find the first 4 terms of the binomial expansion, in ascending powers of $x$, of $\left( 1+\frac{x}{4} \right)^{8}$ giving each term in its simplest form. (... show full transcript

Worked Solution & Example Answer:3. (a) Find the first 4 terms of the binomial expansion, in ascending powers of $x$, of $\left( 1+\frac{x}{4} \right)^{8}$ giving each term in its simplest form - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 4

Step 1

Find the first 4 terms of the binomial expansion, in ascending powers of $x$, of $\left( 1+\frac{x}{4} \right)^{8}$ giving each term in its simplest form.

96%

114 rated

Answer

To find the first four terms of the binomial expansion, we use the Binomial Theorem:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^k

In this case, let:

  • a=1a = 1
  • b=x4b = \frac{x}{4}
  • n=8n = 8

Thus, the first four terms are:

  1. For k=0k = 0: (80)(1)8(x4)0=1{8 \choose 0} (1)^{8} \left( \frac{x}{4} \right)^{0} = 1
  2. For k=1k = 1: (81)(1)7(x4)1=8x4=2x{8 \choose 1} (1)^{7} \left( \frac{x}{4} \right)^{1} = 8 \cdot \frac{x}{4} = 2x
  3. For k=2k = 2: (82)(1)6(x4)2=872(x216)=28x216=74x2{8 \choose 2} (1)^{6} \left( \frac{x}{4} \right)^{2} = \frac{8 \cdot 7}{2} \cdot \left( \frac{x^2}{16} \right) = 28 \cdot \frac{x^2}{16} = \frac{7}{4}x^2
  4. For k=3k = 3: (83)(1)5(x4)3=8766(x364)=56x364=78x3{8 \choose 3} (1)^{5} \left( \frac{x}{4} \right)^{3} = \frac{8 \cdot 7 \cdot 6}{6} \cdot \left( \frac{x^3}{64} \right) = 56 \cdot \frac{x^3}{64} = \frac{7}{8}x^3

Therefore, the first four terms of the expansion are: 1+2x+74x2+78x31 + 2x + \frac{7}{4}x^2 + \frac{7}{8}x^3

Step 2

Use your expansion to estimate the value of $(1.025)^{8}$, giving your answer to 4 decimal places.

99%

104 rated

Answer

To estimate (1.025)8(1.025)^{8} using the expansion, we substitute x=0.1x = 0.1 (since 1.025=1+0.0251.025 = 1 + 0.025) into our binomial expansion:

We start with: 1+2(0.025)+74(0.025)2+78(0.025)31 + 2(0.025) + \frac{7}{4}(0.025)^{2} + \frac{7}{8}(0.025)^{3} Now calculating each term:

  1. The first term is 11.
  2. The second term: 20.025=0.052 \cdot 0.025 = 0.05
  3. The third term: 74(0.025)2=740.000625=0.00109375\frac{7}{4}(0.025)^2 = \frac{7}{4} \cdot 0.000625 = 0.00109375
  4. The fourth term: 78(0.025)3=780.000015625=0.000013671875\frac{7}{8}(0.025)^3 = \frac{7}{8} \cdot 0.000015625 = 0.000013671875

Adding these values together: 1+0.05+0.00109375+0.000013671875=1.0511074218751 + 0.05 + 0.00109375 + 0.000013671875 = 1.051107421875

Rounding this to four decimal places, we get: 1.05111.0511

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;