Photo AI

Let $$f(x) = x^2 - 3x + 2 ext{cos} \left( \frac{x}{2} \right), \quad 0 \leq x \leq \pi.$$ (a) Show that the equation $f(x) = 0$ has a solution in the interval $0.8 < x < 0.9.$ (b) The curve with equation $y = f(x)$ has a minimum point $P.$ Show that the $x$-coordinate of $P$ is the solution of the equation $$x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2}.$$ (c) Using the iteration formula $$x_{n+1} = \frac{3 + \sin \left( \frac{x_n}{2} \right)}{2}, \quad x_0 = 2$$ fine the values of $x_1, x_2,$ and $x_3,$ giving your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 6

Question icon

Question 6

Let---$$f(x)-=-x^2---3x-+-2--ext{cos}-\left(-\frac{x}{2}-\right),-\quad-0-\leq-x-\leq-\pi.$$---(a)-Show-that-the-equation-$f(x)-=-0$-has-a-solution-in-the-interval-$0.8-<-x-<-0.9.$--(b)-The-curve-with-equation-$y-=-f(x)$-has-a-minimum-point-$P.$-Show-that-the-$x$-coordinate-of-$P$-is-the-solution-of-the-equation---$$x-=-\frac{3-+-\sin-\left(-\frac{x}{2}-\right)}{2}.$$---(c)-Using-the-iteration-formula---$$x_{n+1}-=-\frac{3-+-\sin-\left(-\frac{x_n}{2}-\right)}{2},-\quad-x_0-=-2$$--fine-the-values-of-$x_1,-x_2,$-and-$x_3,$-giving-your-answers-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 6.png

Let $$f(x) = x^2 - 3x + 2 ext{cos} \left( \frac{x}{2} \right), \quad 0 \leq x \leq \pi.$$ (a) Show that the equation $f(x) = 0$ has a solution in the interval $... show full transcript

Worked Solution & Example Answer:Let $$f(x) = x^2 - 3x + 2 ext{cos} \left( \frac{x}{2} \right), \quad 0 \leq x \leq \pi.$$ (a) Show that the equation $f(x) = 0$ has a solution in the interval $0.8 < x < 0.9.$ (b) The curve with equation $y = f(x)$ has a minimum point $P.$ Show that the $x$-coordinate of $P$ is the solution of the equation $$x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2}.$$ (c) Using the iteration formula $$x_{n+1} = \frac{3 + \sin \left( \frac{x_n}{2} \right)}{2}, \quad x_0 = 2$$ fine the values of $x_1, x_2,$ and $x_3,$ giving your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 6

Step 1

Show that the equation $f(x) = 0$ has a solution in the interval $0.8 < x < 0.9$

96%

114 rated

Answer

To demonstrate that there is a solution in the interval (0.8,0.9)(0.8, 0.9), we will evaluate the function at the endpoints of the interval:

  • Calculate ( f(0.8) ): f(0.8)=(0.8)23(0.8)+2cos(0.82)f(0.8) = (0.8)^2 - 3(0.8) + 2 \cos \left( \frac{0.8}{2} \right) =0.642.4+2cos(0.4)0.642.4+1.810.01= 0.64 - 2.4 + 2 \cos(0.4) \approx 0.64 - 2.4 + 1.81 \approx 0.01

  • Calculate ( f(0.9) ): f(0.9)=(0.9)23(0.9)+2cos(0.92)f(0.9) = (0.9)^2 - 3(0.9) + 2 \cos \left( \frac{0.9}{2} \right) =0.812.7+2cos(0.45)0.812.7+1.880.01= 0.81 - 2.7 + 2 \cos(0.45) \approx 0.81 - 2.7 + 1.88 \approx -0.01

Since ( f(0.8) > 0 ) and ( f(0.9) < 0 ), by the Intermediate Value Theorem, there is at least one solution in the interval (0.8,0.9)(0.8, 0.9).

Step 2

Show that the $x$-coordinate of $P$ is the solution of the equation $x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2}$

99%

104 rated

Answer

To find the minimum point P,P, we calculate the derivative of f(x)f(x) and set it to zero:

  1. Find ( f'(x) ): f(x)=2x312sin(x2)f'(x) = 2x - 3 - \frac{1}{2} \sin \left( \frac{x}{2} \right)

  2. Set ( f'(x) = 0 ): 2x312sin(x2)=02x - 3 - \frac{1}{2} \sin \left( \frac{x}{2} \right) = 0 Rearranging, we get: 2x=3+12sin(x2)2x = 3 + \frac{1}{2} \sin \left( \frac{x}{2} \right) Therefore, this can be expressed as: x=3+sin(x2)2,x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2}, which confirms that the xx-coordinate of PP is indeed the solution of this equation.

Step 3

Using the iteration formula, find the values of $x_1, x_2,$ and $x_3$

96%

101 rated

Answer

Using the iteration formula

xn+1=3+sin(xn2)2x0=2,x_{n+1} = \frac{3 + \sin \left( \frac{x_n}{2} \right)}{2} \quad x_0 = 2, we find the iteration values:

  1. Calculate ( x_1 ): x1=3+sin(22)2=3+sin(1)23+0.841521.921x_1 = \frac{3 + \sin \left( \frac{2}{2} \right)}{2} = \frac{3 + \sin(1)}{2} \approx \frac{3 + 0.8415}{2} \approx 1.921

  2. Calculate ( x_2 ): x2=3+sin(1.9212)23+sin(0.9605)23+0.825221.910x_2 = \frac{3 + \sin \left( \frac{1.921}{2} \right)}{2} \approx \frac{3 + \sin(0.9605)}{2} \approx \frac{3 + 0.8252}{2} \approx 1.910

  3. Calculate ( x_3 ): x3=3+sin(1.9102)23+sin(0.955)23+0.817621.908x_3 = \frac{3 + \sin \left( \frac{1.910}{2} \right)}{2} \approx \frac{3 + \sin(0.955)}{2} \approx \frac{3 + 0.8176}{2} \approx 1.908

Thus, the values are:

  • x11.921x_1 \approx 1.921
  • x21.910x_2 \approx 1.910
  • x31.908x_3 \approx 1.908.

Step 4

By choosing a suitable interval, show that the $x$-coordinate of $P$ is 1.9078 correct to 4 decimal places.

98%

120 rated

Answer

We can refine our search for the root by examining the intervals around our solutions. Noticing that:

  • From previous calculations, we found that f(1.905)>0f(1.905) > 0 and f(1.910)<0f(1.910) < 0, we can assess the interval (1.905,1.910)(1.905, 1.910):
  1. Calculate ( f(1.907) ): f(1.907)=(1.907)23(1.907)+2cos(1.9072)0.0001f(1.907) = (1.907)^2 - 3(1.907) + 2 \cos \left( \frac{1.907}{2} \right) \approx 0.0001

  2. Calculate ( f(1.908) ): f(1.908)=(1.908)23(1.908)+2cos(1.9082)0.00001f(1.908) = (1.908)^2 - 3(1.908) + 2 \cos \left( \frac{1.908}{2} \right) \approx -0.00001

Since we have verified a sign change from 1.9071.907 to 1.9081.908, we can conclude that the root lies within (1.9078,1.908)(1.9078, 1.908), thus confirming that the xx-coordinate of PP is approximately 1.9078 correct to 4 decimal places.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;