Photo AI

Given y = 3\sqrt{\text{x}} - 6\text{x} + 4, \quad x > 0 (a) find \int y \, dx, simplifying each term - Edexcel - A-Level Maths Pure - Question 3 - 2018 - Paper 1

Question icon

Question 3

Given--y-=-3\sqrt{\text{x}}---6\text{x}-+-4,-\quad-x->-0--(a)-find-\int-y-\,-dx,-simplifying-each-term-Edexcel-A-Level Maths Pure-Question 3-2018-Paper 1.png

Given y = 3\sqrt{\text{x}} - 6\text{x} + 4, \quad x > 0 (a) find \int y \, dx, simplifying each term. (b) (i) Find \frac{dy}{dx} (ii) Hence find the value of \te... show full transcript

Worked Solution & Example Answer:Given y = 3\sqrt{\text{x}} - 6\text{x} + 4, \quad x > 0 (a) find \int y \, dx, simplifying each term - Edexcel - A-Level Maths Pure - Question 3 - 2018 - Paper 1

Step 1

Find \int y \, dx, simplifying each term.

96%

114 rated

Answer

To find \int y , dx, we first substitute for \text{y}:

ydx=(3x6x+4)dx\int y \, dx = \int (3\sqrt{x} - 6x + 4) \, dx

Next, we evaluate each term separately:

  1. For the term ( 3\sqrt{x} ):

    3xdx=3x1/2dx=3(x3/23/2)=2x3/2\int 3\sqrt{x} \, dx = 3 \cdot \int x^{1/2} \, dx = 3 \cdot \left(\frac{x^{3/2}}{3/2}\right) = 2x^{3/2}
  2. For the term ( -6x ):

    6xdx=6(x22)=3x2\int -6x \, dx = -6 \cdot \left(\frac{x^2}{2}\right) = -3x^2
  3. For the constant term ( 4 ):

    4dx=4x\int 4 \, dx = 4x

Combining these results, we have:

ydx=2x3/23x2+4x+c\int y \, dx = 2x^{3/2} - 3x^2 + 4x + c

where ( c ) is the constant of integration.

Step 2

Find \frac{dy}{dx}

99%

104 rated

Answer

To find \frac{dy}{dx}, we differentiate the given function for \text{y}:

dydx=ddx(3x6x+4)\frac{dy}{dx} = \frac{d}{dx}(3\sqrt{x} - 6x + 4)

Calculating term by term, we have:

  1. For ( 3\sqrt{x} ):

    ddx(3x)=312x1/2=32x\frac{d}{dx}(3\sqrt{x}) = 3 \cdot \frac{1}{2}x^{-1/2} = \frac{3}{2\sqrt{x}}
  2. For ( -6x ):

    ddx(6x)=6\frac{d}{dx}(-6x) = -6
  3. For the constant ( 4 ):

    ddx(4)=0\frac{d}{dx}(4) = 0

Thus, combining the derivatives gives:

dydx=32x6\frac{dy}{dx} = \frac{3}{2\sqrt{x}} - 6

Step 3

Hence find the value of \text{x} such that \frac{dy}{dx} = 0

96%

101 rated

Answer

To find the value of \text{x} for which \frac{dy}{dx} = 0, we set the expression equal to zero:

0=32x60 = \frac{3}{2\sqrt{x}} - 6

Solving for \text{x}, we first isolate \frac{3}{2\sqrt{x}}:

32x=6\frac{3}{2\sqrt{x}} = 6

Next, we multiply both sides by ( 2\sqrt{x} ) to eliminate the fraction:

3=12x3 = 12\sqrt{x}

Dividing both sides by 12 gives:

\sqrt{x} = \frac{1}{4}\n$$ Now squaring both sides yields:

\text{x} = \left(\frac{1}{4}\right)^2 = \frac{1}{16}

Thus, the value of \text{x} such that \frac{dy}{dx} = 0 is \( x = \frac{1}{16} \).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;