9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(4)
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4
Question 2
9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(4)
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 tan... show full transcript
Worked Solution & Example Answer:9. (a) Prove that
sin 2x - tan x = tan x cos 2x,
x ≠ (2n + 1)90°, n ∈ Z
(4)
(b) Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°,
sin 2x - tan x = 3 tan x sin x - Edexcel - A-Level Maths Pure - Question 2 - 2017 - Paper 4
Step 1
Prove that sin 2x - tan x = tan x cos 2x
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove the identity, we start with the left side:
Use the double angle identity for sin:
sin2x=2sinxcosx
Therefore,
2sinxcosx−tanx.
Substitute tan x with (\frac{sin x}{cos x}):
2sinxcosx−cosxsinx.
To combine the terms, find a common denominator (cos x):
cosx2sinxcos2x−sinx.
Factor out sin x:
sinx(2cos2x−1).
Use the identity (cos 2x = 2 cos^2 x - 1):
Hence, we can rewrite it as:
sinx⋅cos2x.
So, we have:
sin2x−tanx=tanxcos2x.
This proves the equation.
Step 2
Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°, sin 2x - tan x = 3 tan x sin x
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Starting with the equation:
We rewrite the left side:
sin2x−tanx=3tanxsinx.
Substitute tan x using (\frac{sin x}{cos x}):
sin2x−cosxsinx=3⋅cosxsinx⋅sinx.
Rearranging gives:
sin2x=4cosxsin2x.
Using the identity for sin 2x again:
2sinxcosx=4cosxsin2x.
Cross-multiplying leads to:
2sinxcos2x=4sin2x.
Rearranging yields:
2cos2x=4sinx.
Then divide by 2:
cos2x=2sinx.
Finally, express in terms of sin:
cos2x=2(1−cos2x).
Rearranging gives:
3cos2x+2=0:
This implies:
(x = 16.3°, 163.7°, 180°).
Thus, the final solutions are:
x=16.3°,163.7°,180°.