Photo AI

8. (a) Find all the values of $ heta$, to 1 decimal place, in the interval $0^{ ext{o}} \leq \theta < 360^{ ext{o}}$ for which $$5 \sin (\theta + 30^{ ext{o}}) = 3.$$ (4) (b) Find all the values of $ heta$, to 1 decimal place, in the interval $0^{ ext{o}} \leq \theta < 360^{ ext{o}}$ for which $$\tan^{2} \theta = 4.$$ (5) - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 2

Question icon

Question 1

8.-(a)-Find-all-the-values-of-$-heta$,-to-1-decimal-place,-in-the-interval-$0^{-ext{o}}-\leq-\theta-<-360^{-ext{o}}$-for-which--$$5-\sin-(\theta-+-30^{-ext{o}})-=-3.$$-(4)--(b)-Find-all-the-values-of-$-heta$,-to-1-decimal-place,-in-the-interval-$0^{-ext{o}}-\leq-\theta-<-360^{-ext{o}}$-for-which--$$\tan^{2}-\theta-=-4.$$-(5)-Edexcel-A-Level Maths Pure-Question 1-2006-Paper 2.png

8. (a) Find all the values of $ heta$, to 1 decimal place, in the interval $0^{ ext{o}} \leq \theta < 360^{ ext{o}}$ for which $$5 \sin (\theta + 30^{ ext{o}}) = 3.... show full transcript

Worked Solution & Example Answer:8. (a) Find all the values of $ heta$, to 1 decimal place, in the interval $0^{ ext{o}} \leq \theta < 360^{ ext{o}}$ for which $$5 \sin (\theta + 30^{ ext{o}}) = 3.$$ (4) (b) Find all the values of $ heta$, to 1 decimal place, in the interval $0^{ ext{o}} \leq \theta < 360^{ ext{o}}$ for which $$\tan^{2} \theta = 4.$$ (5) - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 2

Step 1

(a) Find all the values of θ, to 1 decimal place, in the interval 0° ≤ θ < 360° for which 5 sin(θ + 30°) = 3.

96%

114 rated

Answer

To solve the equation, we first isolate the sine function:

sin(θ+30o)=35.\sin (\theta + 30^{\text{o}}) = \frac{3}{5}.

Next, we find the reference angle:

θ+30o=arcsin(35)36.9o.\theta + 30^{\text{o}} = \arcsin\left(\frac{3}{5}\right) \approx 36.9^{\text{o}}.

The angles in the interval for sine include:

  1. First Quadrant:

ightarrow \theta \approx 6.9^{\text{o}}.$$

  1. Second Quadrant:
    θ+30o180o36.9o    θ180o36.9o30o143.1o.\theta + 30^{\text{o}} \approx 180^{\text{o}} - 36.9^{\text{o}} \implies \theta \approx 180^{\text{o}} - 36.9^{\text{o}} - 30^{\text{o}}\approx 143.1^{\text{o}}.

Thus, the solutions for (a) are: θ=6.9o and θ=143.1o\theta = 6.9^{\text{o}} \text{ and } \theta = 143.1^{\text{o}}.

Step 2

(b) Find all the values of θ, to 1 decimal place, in the interval 0° ≤ θ < 360° for which tan² θ = 4.

99%

104 rated

Answer

To find the values of θ\theta, we first take the square root of both sides:

tanθ=±2.\tan \theta = \pm 2.

Next, we find the reference angles:

  1. For tanθ=2\tan \theta = 2:
    θ=arctan(2)63.4o.\theta = \arctan(2) \approx 63.4^{\text{o}}.
    Thus, the angles in the interval are:

    • First Quadrant:
      θ=63.4o.\theta = 63.4^{\text{o}}.
    • Third Quadrant:
      θ=180o+63.4o243.4o.\theta = 180^{\text{o}} + 63.4^{\text{o}} \approx 243.4^{\text{o}}.
  2. For tanθ=2\tan \theta = -2:
    Except for fourth quadrant:

    • Second Quadrant:
      θ=180o63.4o116.6o.\theta = 180^{\text{o}} - 63.4^{\text{o}} \approx 116.6^{\text{o}}.
    • Fourth Quadrant:
      θ=360o63.4o296.6o.\theta = 360^{\text{o}} - 63.4^{\text{o}} \approx 296.6^{\text{o}}.

Thus, the solutions for (b) are:
θ63.4o,243.4o,116.6o,296.6o.\theta \approx 63.4^{\text{o}}, 243.4^{\text{o}}, 116.6^{\text{o}}, 296.6^{\text{o}}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;