Given that
\[ \frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2 \]
find the values of the constants a, b, c, d and e. - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 7
Question 2
Given that
\[ \frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2 \]
find the values of the constants a, b, c, d... show full transcript
Worked Solution & Example Answer:Given that
\[ \frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2 \]
find the values of the constants a, b, c, d and e. - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 7
Step 1
Using long division by \( x^2 - 4 \)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We start by performing long division of ( 3x^4 - 2x^3 - 5x^2 - 4 ) by ( x^2 - 4 ). In the first step, divide the leading term: ( 3x^4 \div x^2 = 3x^2 ).