Photo AI

Given that $y = 3x^2 + 4 oot{x}, \, x > 0$, find (a) \( \frac{dy}{dx} \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 1

Question icon

Question 5

Given-that-$y-=-3x^2-+-4-oot{x},-\,-x->-0$,-find--(a)-\(-\frac{dy}{dx}-\)-Edexcel-A-Level Maths Pure-Question 5-2007-Paper 1.png

Given that $y = 3x^2 + 4 oot{x}, \, x > 0$, find (a) \( \frac{dy}{dx} \) . (b) \( \frac{d^2y}{dx^2} \) . (c) \( \int y \, dx \) .

Worked Solution & Example Answer:Given that $y = 3x^2 + 4 oot{x}, \, x > 0$, find (a) \( \frac{dy}{dx} \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 1

Step 1

(a) \( \frac{dy}{dx} \)

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we need to differentiate the function:

dydx=ddx(3x2+4x12)=6x+412x12=6x+2x.\frac{dy}{dx} = \frac{d}{dx}(3x^2 + 4x^{\frac{1}{2}}) = 6x + 4 \cdot \frac{1}{2} x^{-\frac{1}{2}} = 6x + \frac{2}{\sqrt{x}}.

Thus, the derivative is:

dydx=6x+2x.\frac{dy}{dx} = 6x + \frac{2}{\sqrt{x}}.

Step 2

(b) \( \frac{d^2y}{dx^2} \)

99%

104 rated

Answer

Now we differentiate ( \frac{dy}{dx} ) to find ( \frac{d^2y}{dx^2} ):

d2ydx2=ddx(6x+2x)=622x32=6x32.\frac{d^2y}{dx^2} = \frac{d}{dx} \left( 6x + \frac{2}{\sqrt{x}} \right) = 6 - \frac{2}{2} x^{-\frac{3}{2}} = 6 - x^{-\frac{3}{2}}.

So the second derivative is:

d2ydx2=61x32.\frac{d^2y}{dx^2} = 6 - \frac{1}{x^{\frac{3}{2}}}.

Step 3

(c) \( \int y \, dx \)

96%

101 rated

Answer

To integrate ( y ), we find:

ydx=(3x2+4x)dx.\int y \, dx = \int (3x^2 + 4\sqrt{x}) \, dx.

Calculating this:

=3x2dx+4x12dx=3x33+4x3232+C=x3+83x32+C.= \int 3x^2 \, dx + \int 4x^{\frac{1}{2}} \, dx = 3 \cdot \frac{x^3}{3} + 4 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = x^3 + \frac{8}{3} x^{\frac{3}{2}} + C.

Thus, the integral is:

ydx=x3+83x32+C.\int y \, dx = x^3 + \frac{8}{3} x^{\frac{3}{2}} + C.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;