Photo AI

f(x) = 7 \, \cos \, 2x - 24 \, \sin \, 2x Given that f(x) = R \cos(2x + \alpha), \text{ where } R > 0 \text{ and } 0 < \alpha < 90^\circ; (a) find the value of R and the value of \alpha - Edexcel - A-Level Maths Pure - Question 2 - 2012 - Paper 6

Question icon

Question 2

f(x)-=-7-\,-\cos-\,-2x---24-\,-\sin-\,-2x--Given-that-f(x)-=-R-\cos(2x-+-\alpha),-\text{-where-}-R->-0-\text{-and-}-0-<-\alpha-<-90^\circ;----(a)-find-the-value-of-R-and-the-value-of-\alpha-Edexcel-A-Level Maths Pure-Question 2-2012-Paper 6.png

f(x) = 7 \, \cos \, 2x - 24 \, \sin \, 2x Given that f(x) = R \cos(2x + \alpha), \text{ where } R > 0 \text{ and } 0 < \alpha < 90^\circ; (a) find the value of R... show full transcript

Worked Solution & Example Answer:f(x) = 7 \, \cos \, 2x - 24 \, \sin \, 2x Given that f(x) = R \cos(2x + \alpha), \text{ where } R > 0 \text{ and } 0 < \alpha < 90^\circ; (a) find the value of R and the value of \alpha - Edexcel - A-Level Maths Pure - Question 2 - 2012 - Paper 6

Step 1

find the value of R and the value of α

96%

114 rated

Answer

To find the value of R and α, we compare the given function with the standard cosine form:

Rcos(2x+α)=7cos2x24sin2xR \cos(2x + \alpha) = 7 \cos 2x - 24 \sin 2x

Using the identities:

Rcosα=7R \cos \alpha = 7
Rsinα=24R \sin \alpha = -24

  1. To find R, we use the equation:

R=(7)2+(24)2=49+576=625=25R = \sqrt{(7)^2 + (-24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25

  1. Next, finding \alpha:

From the equations,

tanα=sinαcosα=247\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-24}{7}
Thus,

α=tan1(247)73.7\alpha = \tan^{-1}\left(\frac{-24}{7}\right) \approx 73.7^\circ.

Step 2

solve the equation 7 cos 2x - 24 sin 2x = 12.5

99%

104 rated

Answer

Using the values of R and α, we will re-write the equation:

Rcos(2x+α)=12.5R \cos(2x + \alpha) = 12.5

Substituting R and α, we have:

25cos(2x+73.7)=12.525 \cos(2x + 73.7^\circ) = 12.5

Dividing both sides by 25:

cos(2x+73.7)=0.5\cos(2x + 73.7^\circ) = 0.5

This leads us to:

2x+73.7=60 or 2x+73.7=3002x + 73.7^\circ = 60^\circ \, \text{ or } \, 2x + 73.7^\circ = 300^\circ
A secondary angle yields:

  1. For the first equation:

2x=6073.7=13.7    x=6.85(not in range)2x = 60^\circ - 73.7^\circ = -13.7^\circ \implies x = -6.85^\circ \, (\text{not in range})

  1. For the second equation:

2x=30073.7=226.3    x=113.152x = 300^\circ - 73.7^\circ = 226.3^\circ \implies x = 113.15^\circ

Thus, the only valid solution in the range is:

x=113.2x = 113.2^\circ (to 1 decimal place).

Step 3

Express 14 cos² x - 48 sin x cos x in the form a cos 2x + b sin 2x + c

96%

101 rated

Answer

Using the double angle identities:

cos2x=2cos2x1\cos 2x = 2 \cos^2 x - 1
sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x

We rewrite the expression:

14cos2x48sinxcosx14 \cos^{2} x - 48 \sin x \cos x
= 14(cos2x+12)48(sin2x2) 14 \left(\frac{\cos 2x + 1}{2}\right) - 48 \left(\frac{\sin 2x}{2}\right)

= 7cos2x+724sin2x7 \cos 2x + 7 - 24 \sin 2x

Thus, comparing with the form a cos 2x + b sin 2x + c:
a = 7, b = -24, c = 7.

Step 4

deduce the maximum value of 14 cos² x - 48 sin x cos x

98%

120 rated

Answer

To find the maximum value of:

14cos2x48sinxcosx14 \cos^{2} x - 48 \sin x \cos x, we use the derived expression:

=7cos2x24sin2x+7= 7 \cos 2x - 24 \sin 2x + 7

The maximum value of 7 cos 2x - 24 sin 2x can be determined by using the maximum modulus:

72+(24)2=49+576=25\sqrt{7^2 + (-24)^2} = \sqrt{49 + 576} = 25, so

The total maximum value becomes:

25+7=3225 + 7 = 32.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;