Photo AI

(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ (b) Given that $$x = \sec 2y$$ find $$\frac{dx}{dy}$$ in terms of $$y$$ - Edexcel - A-Level Maths Pure - Question 1 - 2011 - Paper 4

Question icon

Question 1

(a)-Given-that-$$\frac{d}{dx}(\cos-x)-=--\sin-x$$-show-that-$$\frac{d}{dx}(\sec-x)-=-\sec-x-\tan-x.$$--(b)-Given-that-$$x-=-\sec-2y$$-find-$$\frac{dx}{dy}$$-in-terms-of-$$y$$-Edexcel-A-Level Maths Pure-Question 1-2011-Paper 4.png

(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ (b) Given that $$x = \sec 2y$$ find $$\frac{dx}{dy}$$ in terms... show full transcript

Worked Solution & Example Answer:(a) Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ (b) Given that $$x = \sec 2y$$ find $$\frac{dx}{dy}$$ in terms of $$y$$ - Edexcel - A-Level Maths Pure - Question 1 - 2011 - Paper 4

Step 1

Given that $$\frac{d}{dx}(\cos x) = -\sin x$$, show that $$\frac{d}{dx}(\sec x) = \sec x \tan x$$.

96%

114 rated

Answer

To find the derivative of secx\sec x, we can use the reciprocal identity:

secx=1cosx\sec x = \frac{1}{\cos x}.

Using the quotient rule:

ddx(secx)=ddx(1cosx)\frac{d}{dx}(\sec x) = \frac{d}{dx}\left( \frac{1}{\cos x} \right)

Letting u=cosxu = \cos x, we apply the quotient rule:

ddx(secx)=0u1ddx(cosx)(cosx)2\frac{d}{dx}(\sec x) = \frac{0 \cdot u - 1 \cdot \frac{d}{dx}(\cos x)}{(\cos x)^2}

Substituting the derivative of cosx\cos x:

=(sinx)(cosx)2=sinx(cosx)2= \frac{-(-\sin x)}{(\cos x)^2} = \frac{\sin x}{(\cos x)^2}

Recognizing the identities, we have:

sinx(cosx)2=secxtanx.\frac{\sin x}{(\cos x)^2} = \sec x \tan x. This completes the proof.

Step 2

Find $$\frac{dx}{dy}$$ in terms of $$y$$.

99%

104 rated

Answer

Given that x=sec2yx = \sec 2y, we differentiate with respect to yy:

dxdy=ddy(sec2y).\frac{dx}{dy} = \frac{d}{dy}(\sec 2y).

Using the chain rule, we get:

dxdy=sec2ytan2yddy(2y)=2sec2ytan2y.\frac{dx}{dy} = \sec 2y \tan 2y \cdot \frac{d}{dy}(2y) = 2 \sec 2y \tan 2y.

Step 3

Hence find $$\frac{dy}{dx}$$ in terms of $$x$$.

96%

101 rated

Answer

We know that:

dydx=1dxdy.\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}.
Substituting dxdy\frac{dx}{dy} gives:

dydx=12sec2ytan2y.\frac{dy}{dx} = \frac{1}{2 \sec 2y \tan 2y}.
Using the identity sec2y=x\sec 2y = x, we can express it in terms of xx:

dydx=12xtan2y.\frac{dy}{dx} = \frac{1}{2x \tan 2y}.
This completes the answer.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;