Photo AI

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5$} giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Question icon

Question 8

7.-(a)-Differentiate-with-respect-to-$x$,--(i)-$\frac{1}{x^2}-\ln(3x)$--(ii)-$\frac{1---10x}{(2x---1)^5$}-giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 5.png

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5$} giving your answer in its simplest form. (b) Given that $x... show full transcript

Worked Solution & Example Answer:7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5$} giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Step 1

(i) $\frac{1}{x^2} \ln(3x)$

96%

114 rated

Answer

To differentiate this function, we will use the product rule. Let:

  • u=ln(3x)u = \ln(3x)
  • v=1x2v = \frac{1}{x^2}

Thus, we have:

dydx=uv+uv\frac{dy}{dx} = u'v + uv'

  1. First, we compute uu':

u=ddx(ln(3x))=13x3=1xu' = \frac{d}{dx}(\ln(3x)) = \frac{1}{3x} \cdot 3 = \frac{1}{x}

  1. Next, we find vv':

v=ddx(1x2)=2x3v' = \frac{d}{dx}(\frac{1}{x^2}) = -\frac{2}{x^3}

Now substituting into the product rule formula gives us:

dydx=1x1x2+ln(3x)(2x3)=1x32ln(3x)x3\frac{dy}{dx} = \frac{1}{x} \cdot \frac{1}{x^2} + \ln(3x) \cdot (-\frac{2}{x^3}) = \frac{1}{x^3} - \frac{2 \ln(3x)}{x^3}

Hence, the final answer is:

dydx=12ln(3x)x3\frac{dy}{dx} = \frac{1 - 2\ln(3x)}{x^3}

Step 2

(ii) $\frac{1 - 10x}{(2x - 1)^5}$

99%

104 rated

Answer

To differentiate this function, we use the quotient rule. Let:

  • u=110xu = 1 - 10x
  • v=(2x1)5v = (2x - 1)^5

Then the quotient rule states:

dydx=uvuvv2\frac{dy}{dx} = \frac{u'v - uv'}{v^2}

  1. Calculate uu':

u=10u' = -10

  1. Now, use the chain rule to find vv':

v=5(2x1)42=10(2x1)4v' = 5(2x - 1)^4 \cdot 2 = 10(2x - 1)^4

  1. Plugging these into the quotient rule gives:

dydx=(10)(2x1)5(110x)(10(2x1)4)(2x1)10\frac{dy}{dx} = \frac{(-10)(2x - 1)^5 - (1-10x)(10(2x - 1)^4)}{(2x - 1)^{10}}

  1. Simplifying, we get:

dydx=10(2x1)5+10(110x)(2x1)4(2x1)10\frac{dy}{dx} = \frac{-10(2x - 1)^5 + 10(1 - 10x)(2x - 1)^4}{(2x - 1)^{10}}

  1. Factoring gives:

dydx=10(2x1)4(x+1)(2x1)10\frac{dy}{dx} = \frac{10(2x - 1)^4(-x + 1)}{(2x - 1)^{10}}

Thus:

dydx=10(1x)(2x1)6\frac{dy}{dx} = \frac{10(1-x)}{(2x - 1)^6}

Step 3

Given that $x = 3 \tan 2y$, find $\frac{dy}{dx}$ in terms of $x$.

96%

101 rated

Answer

To find dydx\frac{dy}{dx}, we need to apply implicit differentiation:

  1. Differentiate both sides with respect to xx:

dxdx=3sec2(2y)d(2y)dx\frac{dx}{dx} = 3 \sec^2(2y) \cdot \frac{d(2y)}{dx}

  1. Recall that d(2y)dx=2dydx\frac{d(2y)}{dx} = 2\frac{dy}{dx}, therefore:

1=6sec2(2y)dydx1 = 6 \sec^2(2y) \frac{dy}{dx}

  1. From this, we can solve for dydx\frac{dy}{dx}:

dydx=16sec2(2y)\frac{dy}{dx} = \frac{1}{6 \sec^2(2y)}

  1. To express this in terms of xx, use the original substitution:

Given x=3tan2yx = 3 \tan 2y, we can find tan2y\tan 2y as:

tan2y=x3\tan 2y = \frac{x}{3}

  1. Thus, sec2(2y)=1+tan2(2y)=1+(x3)2=9+x29\sec^2(2y) = 1 + \tan^2(2y) = 1 + \left(\frac{x}{3}\right)^2 = \frac{9 + x^2}{9}.

  2. Substitute this into the derivative:

dydx=169+x29=96(9+x2)\frac{dy}{dx} = \frac{1}{6 \cdot \frac{9 + x^2}{9}} = \frac{9}{6(9 + x^2)}

Finally, we conclude that:

dydx=32(9+x2)\frac{dy}{dx} = \frac{3}{2(9 + x^2)}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;