Photo AI

6. (a) Use the double angle formulae and the identity $$ ext{cos}(A+B) = ext{cos} A ext{cos} B - ext{sin} A ext{sin} B $$ to obtain an expression for cos 3x in terms of powers of cos x only - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 6

Question icon

Question 6

6.-(a)-Use-the-double-angle-formulae-and-the-identity--$$--ext{cos}(A+B)-=--ext{cos}-A--ext{cos}-B----ext{sin}-A--ext{sin}-B-$$--to-obtain-an-expression-for-cos-3x-in-terms-of-powers-of-cos-x-only-Edexcel-A-Level Maths Pure-Question 6-2008-Paper 6.png

6. (a) Use the double angle formulae and the identity $$ ext{cos}(A+B) = ext{cos} A ext{cos} B - ext{sin} A ext{sin} B $$ to obtain an expression for cos 3x i... show full transcript

Worked Solution & Example Answer:6. (a) Use the double angle formulae and the identity $$ ext{cos}(A+B) = ext{cos} A ext{cos} B - ext{sin} A ext{sin} B $$ to obtain an expression for cos 3x in terms of powers of cos x only - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 6

Step 1

Use the double angle formulae and the identity

96%

114 rated

Answer

Starting with the double angle formula for cosine:

extcos(2x)=2extcos2x1, ext{cos}(2x) = 2 ext{cos}^2 x - 1,

we can express cos(3x) as:

extcos(3x)=extcos(2x+x)=extcos(2x)extcos(x)extsin(2x)extsin(x). ext{cos}(3x) = ext{cos}(2x + x) = ext{cos}(2x) ext{cos}(x) - ext{sin}(2x) ext{sin}(x).

Substituting cos(2x) and sin(2x):

=(2extcos2x1)extcosx(2extsinxextcosx)extsinx.= (2 ext{cos}^2 x - 1) ext{cos} x - (2 ext{sin} x ext{cos} x) ext{sin} x.

Using the identity extsin2x=1extcos2x ext{sin}^2 x = 1 - ext{cos}^2 x gives:

=(2extcos2x1)extcosx(2extsin2x)extcosx=2extcos3xextcosx2(1extcos2x)extcosx.= (2 ext{cos}^2 x - 1) ext{cos} x - (2 ext{sin}^2 x) ext{cos} x = 2 ext{cos}^3 x - ext{cos} x - 2(1 - ext{cos}^2 x) ext{cos} x.

Simplifying, we arrive at:

$$ ext{cos} 3x = 4 ext{cos}^3 x - 3 ext{cos} x.$

Step 2

Prove that \( \frac{\text{cos} x}{1+\text{sin} x} + \frac{1+\text{sin} x}{\text{cos} x} = 2 \text{sec} x \)

99%

104 rated

Answer

Starting with the left-hand side:

rac{ ext{cos} x}{1 + ext{sin} x} + rac{1 + ext{sin} x}{ ext{cos} x} = rac{ ext{cos}^2 x + (1 + ext{sin} x)(1 + ext{sin} x)}{(1 + ext{sin} x) ext{cos} x}.

Now simplifying the numerator:

Thus, we have:

This proves the statement.

Step 3

Hence find, for 0 < x < 2π, all the solutions of \(\frac{\text{cos} x}{1+\text{sin} x} + \frac{1+\text{sin} x}{\text{cos} x} = 4\)

96%

101 rated

Answer

From the proven expression:

2extsecx=4,2 ext{sec} x = 4, we can deduce:

extsecx=2. ext{sec} x = 2.

This implies:

ext{cos} x = rac{1}{2}.

The general solutions for this equation are:

x = rac{ ext{π}}{3} + 2n ext{π} ext{ and } x = rac{5 ext{π}}{3} + 2n ext{π} for integer n. We restrict n to the range such that (0 < x < 2π).

Thus, the specific solutions for 0 < x < 2π are:

$$x = rac{ ext{π}}{3} ext{ and } x = rac{5 ext{π}}{3}.$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;