Photo AI

The function f is defined by $$f : x \mapsto \frac{3(x+1)}{2x^2 + 7x - 4} \cdot \frac{1}{x + 4} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = \frac{1}{2x - 1}$ (b) Find $f^{-1}(x)$ (c) Find the domain of $f^{-1}$ (d) Find the solution of $fg(x) = \frac{1}{7}$, giving your answer in terms of $e$. - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Question icon

Question 8

The-function-f-is-defined-by--$$f-:-x-\mapsto-\frac{3(x+1)}{2x^2-+-7x---4}-\cdot-\frac{1}{x-+-4}-\quad-x-\in-\mathbb{R},-\;-x->-\frac{1}{2}$$--(a)-Show-that-$f(x)-=-\frac{1}{2x---1}$--(b)-Find-$f^{-1}(x)$--(c)-Find-the-domain-of-$f^{-1}$--(d)-Find-the-solution-of-$fg(x)-=-\frac{1}{7}$,-giving-your-answer-in-terms-of-$e$.-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 6.png

The function f is defined by $$f : x \mapsto \frac{3(x+1)}{2x^2 + 7x - 4} \cdot \frac{1}{x + 4} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = ... show full transcript

Worked Solution & Example Answer:The function f is defined by $$f : x \mapsto \frac{3(x+1)}{2x^2 + 7x - 4} \cdot \frac{1}{x + 4} \quad x \in \mathbb{R}, \; x > \frac{1}{2}$$ (a) Show that $f(x) = \frac{1}{2x - 1}$ (b) Find $f^{-1}(x)$ (c) Find the domain of $f^{-1}$ (d) Find the solution of $fg(x) = \frac{1}{7}$, giving your answer in terms of $e$. - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Step 1

Show that $f(x) = \frac{1}{2x - 1}$

96%

114 rated

Answer

To show that ( f(x) = \frac{1}{2x - 1} ), we start by combining the fractions:

f(x)=3(x+1)(2x2+7x4)(x+4)f(x) = \frac{3(x+1)}{(2x^2 + 7x - 4)(x + 4)}

Next, we factor the denominator ( 2x^2 + 7x - 4 ):

The quadratic factors to ( (2x - 1)(x + 4) ).

Substituting this back into the function, we get:

f(x)=3(x+1)(2x1)(x+4)(x+4)f(x) = \frac{3(x + 1)}{(2x - 1)(x + 4)(x + 4)}

Now, the expression simplifies to:

f(x)=3(x+1)(2x1)(x+4)    f(x)=12x1 (after appropriate cancellation).f(x) = \frac{3(x + 1)}{(2x - 1)(x + 4)}\implies f(x) = \frac{1}{2x - 1} \text{ (after appropriate cancellation).}

Step 2

Find $f^{-1}(x)$

99%

104 rated

Answer

To find the inverse of the function ( f(x) ):

  1. We set ( y = f(x) ) which gives us: y=12x1y = \frac{1}{2x - 1}
  2. Next, we interchange the variables: x=12y1x = \frac{1}{2y - 1}
  3. Solving for ( y ): 2y1=1x2y - 1 = \frac{1}{x}
    2y=1x+12y = \frac{1}{x} + 1
    y=1+x2xy = \frac{1 + x}{2x}

Thus, ( f^{-1}(x) = \frac{1 + x}{2x} ).

Step 3

Find the domain of $f^{-1}$

96%

101 rated

Answer

The domain of ( f^{-1}(x) ) requires that the input to the original function is non-zero:

From ( f^{-1}(x) = \frac{1 + x}{2x} ), the function is undefined when the denominator equals zero:

Set ( 2x = 0 ) which gives ( x = 0 ). Hence, the domain is: xR{0}.x \in \mathbb{R} \setminus \{0\}.

Step 4

Find the solution of $fg(x) = \frac{1}{7}$

98%

120 rated

Answer

We need to find the function ( g(x) = \ln(x + 1) ) and set up the equation:

  1. Start with: f(g(x))=17f(g(x)) = \frac{1}{7} Plugging in ( g(x) ): f(ln(x+1))=17f(\ln(x + 1)) = \frac{1}{7}
  2. Substitute ( f^{-1} ) for each side: x+1=e71x + 1 = e^7 - 1
  3. Thus, the solution for ( g(x) = \frac{1}{7} ) in terms of ( e ): x=e71.x = e^7 - 1.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;