Photo AI

12. (a) Prove $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2\cot 2\theta$$ \(\theta \pm (90n)^{\circ}, n \in \mathbb{Z}\) (4) (b) Hence solve, for \(90^{\circ} < \theta < 180^{\circ}\), the equation $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4$$ giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 12 - 2019 - Paper 2

Question icon

Question 12

12.-(a)-Prove--$$\frac{\cos-3\theta}{\sin-\theta}-+-\frac{\sin-3\theta}{\cos-\theta}-=-2\cot-2\theta$$--\(\theta-\pm-(90n)^{\circ},-n-\in-\mathbb{Z}\)-(4)--(b)-Hence-solve,-for-\(90^{\circ}-<-\theta-<-180^{\circ}\),-the-equation--$$\frac{\cos-3\theta}{\sin-\theta}-+-\frac{\sin-3\theta}{\cos-\theta}-=-4$$--giving-any-solutions-to-one-decimal-place.-Edexcel-A-Level Maths Pure-Question 12-2019-Paper 2.png

12. (a) Prove $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2\cot 2\theta$$ \(\theta \pm (90n)^{\circ}, n \in \mathbb{Z}\) (4) (b) Hence... show full transcript

Worked Solution & Example Answer:12. (a) Prove $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2\cot 2\theta$$ \(\theta \pm (90n)^{\circ}, n \in \mathbb{Z}\) (4) (b) Hence solve, for \(90^{\circ} < \theta < 180^{\circ}\), the equation $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4$$ giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 12 - 2019 - Paper 2

Step 1

Prove $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2\cot 2\theta$$

96%

114 rated

Answer

To prove the identity, we start with the left-hand side:

cos3θsinθ+sin3θcosθ\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta}

We can find a common denominator:

=cos3θcosθ+sin3θsinθsinθcosθ= \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta}

Using the cosine addition formula, this simplifies to:

=cos(3θθ)sinθcosθ= \frac{\cos(3\theta - \theta)}{\sin \theta \cos \theta}

Then, using the double angle identity for cotangent, we have:

=cos2θsinθcosθ= \frac{\cos 2\theta}{\sin \theta \cos \theta}

Identifying this with the right-hand side, we recognize that:

=2cot2θ= 2\cot 2\theta

Thus, proving the identity is complete.

Step 2

Hence solve, for \(90^{\circ} < \theta < 180^{\circ}\), the equation $$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4$$

99%

104 rated

Answer

Starting from the earlier rearrangement:

cos3θsin3θsinθcosθ=4\frac{\cos 3\theta \sin 3\theta}{\sin \theta \cos \theta} = 4

This simplifies to:

sin3θ=4sinθcosθcos3θ\sin 3\theta = 4 \frac{\sin \theta \cos \theta}{\cos 3\theta}

Next, we rearrange this equation to isolate (\tan 3\theta):

tan3θ=4tanθ\tan 3\theta = 4\tan \theta

Using the arctangent function:

3θ=arctan(4tanθ)3\theta = \arctan(4 \tan \theta)

This gives us:

\arctan(4) + 180n}{3}, n \in \mathbb{Z}$$ Calculating the principal solution leads us to:\n \[ \theta \approx 103.3^{\circ} \] \nGiving only this solution for \(90^{\circ} < \theta < 180^{\circ}\).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;