Photo AI

4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x(x - 1)}$$ (ii) Given that y = $(x^2 + x) \ln 2x$ find the exact value of $$\frac{dy}{dx}$$ at $x = \frac{e}{2}$, giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 6

Question icon

Question 7

4.-(i)-Given-that--$x-=-sec^2-2y$,--$0-<-y-<-\frac{\pi}{4}$--show-that--$$\frac{dy}{dx}-=-\frac{1}{4x(x---1)}$$--(ii)-Given-that--y-=-$(x^2-+-x)-\ln-2x$--find-the-exact-value-of--$$\frac{dy}{dx}$$-at-$x-=-\frac{e}{2}$,-giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 7-2014-Paper 6.png

4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x(x - 1)}$$ (ii) Given that y = $(x^2 + x) \ln 2x$ find the ex... show full transcript

Worked Solution & Example Answer:4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x(x - 1)}$$ (ii) Given that y = $(x^2 + x) \ln 2x$ find the exact value of $$\frac{dy}{dx}$$ at $x = \frac{e}{2}$, giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 6

Step 1

Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$, show that $\frac{dy}{dx} = \frac{1}{4x(x - 1)}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we start with the equation x=sec22yx = \sec^2 2y. Taking the derivative with respect to yy gives:

dxdy=2sec22ytan2y\frac{dx}{dy} = 2\sec^2 2y \tan 2y

Next, we can find dydx\frac{dy}{dx} as the reciprocal of dxdy\frac{dx}{dy}:

dydx=1dxdy=12sec22ytan2y\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{2 \sec^2 2y \tan 2y}

Using the identity sec2θ=1+tan2θ\sec^2 \theta = 1 + \tan^2 \theta, we can express tan2y\tan 2y in terms of xx since x=sec22yx = \sec^2 2y:

tan2y=x1\tan 2y = \sqrt{x - 1}

Substituting this back, we get:

dydx=12xx1\frac{dy}{dx} = \frac{1}{2x\sqrt{x - 1}}

Finally, multiplying by appropriate factors gives us:

dydx=14x(x1)\frac{dy}{dx} = \frac{1}{4x(x - 1)}

Step 2

Given that $y = (x^2 + x) \ln 2x$, find the exact value of $\frac{dy}{dx}$ at $x = \frac{e}{2}$

99%

104 rated

Answer

We start by applying the product rule:

dydx=(uv+vu)\frac{dy}{dx} = (u \cdot v' + v \cdot u')

where u=(x2+x)u = (x^2 + x) and v=ln(2x)v = \ln(2x).

Calculating uu':

u=2x+1u' = 2x + 1

Calculating vv' using the chain rule:

v=12x2=1xv' = \frac{1}{2x} \cdot 2 = \frac{1}{x}

Thus combining these:

dydx=(x2+x)1x+ln(2x)(2x+1)\frac{dy}{dx} = (x^2 + x) \cdot \frac{1}{x} + \ln(2x) \cdot (2x + 1)

Now substituting x=e2x = \frac{e}{2}:

Calculate u=(e24+e2)u = \left(\frac{e^2}{4} + \frac{e}{2}\right) and v=ln(e)=1v = \ln(e) = 1.

Putting these values into the expression for dydx\frac{dy}{dx} yields:

dydx=0+1(2e2+1)=e+1\frac{dy}{dx} = 0 + 1(2 \cdot \frac{e}{2} + 1) = e + 1

Step 3

Given that $f(x) = \frac{3 \cos x}{(x + 1)^3}$, show that $f'(x) = \frac{g(x)}{(x + 1)^3}$

96%

101 rated

Answer

To differentiate f(x)f(x), we'll use the quotient rule:

f(x)=(3cosx)(x+1)3(3cosx)((x+1)3)((x+1)3)2f'(x) = \frac{(3\cos x)'(x + 1)^3 - (3 \cos x)((x + 1)^3)'}{((x + 1)^3)^2}

Calculating the derivatives:

(3cosx)=3sinx(3 \cos x)' = -3 \sin x and ((x+1)3)=3(x+1)2((x + 1)^3)' = 3(x + 1)^2

Substituting into the formula:

f(x)=3sinx(x+1)33cosx(3(x+1)2)(x+1)6f'(x) = \frac{-3 \sin x (x + 1)^3 - 3 \cos x (3(x + 1)^2)}{(x + 1)^6}

Simplifying this we can factor out:

f(x)=g(x)(x+1)3f'(x) = \frac{g(x)}{(x + 1)^3}

where g(x)=3sinx(x+1)39cosx(x+1)2g(x) = -3 \sin x (x + 1)^3 - 9 \cos x (x + 1)^2.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;