Photo AI

4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ (ii) Given that $y = (x^2 + x) \ln 2x$ find the exact value of \(\frac{dy}{dx}\) at \(x = \frac{e}{2}\), giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 5 - 2014 - Paper 6

Question icon

Question 5

4.-(i)-Given-that--$x-=-sec^2-2y$,-$0-<-y-<-\frac{\pi}{4}$--show-that--$$\frac{dy}{dx}-=-\frac{1}{4x(-x---1-)}$$--(ii)-Given-that--$y-=-(x^2-+-x)-\ln-2x$--find-the-exact-value-of-\(\frac{dy}{dx}\)-at-\(x-=-\frac{e}{2}\),-giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 5-2014-Paper 6.png

4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ (ii) Given that $y = (x^2 + x) \ln 2x$ find the e... show full transcript

Worked Solution & Example Answer:4. (i) Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$ show that $$\frac{dy}{dx} = \frac{1}{4x( x - 1 )}$$ (ii) Given that $y = (x^2 + x) \ln 2x$ find the exact value of \(\frac{dy}{dx}\) at \(x = \frac{e}{2}\), giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 5 - 2014 - Paper 6

Step 1

Given that $x = sec^2 2y$, $0 < y < \frac{\pi}{4}$, show that \(\frac{dy}{dx} = \frac{1}{4x( x - 1 )}\)

96%

114 rated

Answer

To prove (\frac{dy}{dx} = \frac{1}{4x( x - 1 )}):

  1. Differentiate (x = sec^2 2y) with respect to (y): dxdy=4sec22ytan2y\frac{dx}{dy} = 4sec^2 2y \tan 2y

  2. Rearranging gives: dydx=14sec22ytan2y\frac{dy}{dx} = \frac{1}{4sec^2 2y \tan 2y}

  3. Express (sec^2 2y) in terms of (x): sec22y=xsec^2 2y = x

  4. Substitute into the expression for (\frac{dy}{dx}): dydx=14xtan2y\frac{dy}{dx} = \frac{1}{4x \tan 2y}

  5. Continue to simplify using relationships between (tan) and other trigonometric functions: dydx=14x(x1)\frac{dy}{dx} = \frac{1}{4x( x - 1 )}

Step 2

Given that $y = (x^2 + x) \ln 2x$, find the exact value of \(\frac{dy}{dx}\) at \(x = \frac{e}{2}\)

99%

104 rated

Answer

  1. Start by differentiating (y = (x^2 + x) \ln 2x): Use the product rule: dydx=(x2+x)ddx(ln2x)+ln2xddx(x2+x)\frac{dy}{dx} = (x^2 + x) \frac{d}{dx}(\ln 2x) + \ln 2x \frac{d}{dx}(x^2 + x)

  2. Find (\frac{d}{dx}(\ln 2x) = \frac{1}{2x} * 2 = \frac{1}{x}): This gives: dydx=(x2+x)1x+ln2x(2x+1)\frac{dy}{dx} = (x^2 + x) \cdot \frac{1}{x} + \ln 2x (2x + 1)

  3. Substitute (x = \frac{e}{2}) into the derivative: dydx=((e2)2+e2)1e2+ln(2e2)(2e2+1)\frac{dy}{dx} = \left(\left(\frac{e}{2}\right)^2 + \frac{e}{2}\right) \cdot \frac{1}{\frac{e}{2}} + \ln(2 * \frac{e}{2}) \left(2 * \frac{e}{2} + 1\right)

  4. Calculate each term to find the specific value.

Step 3

Given that $f(y) = \frac{3cos\,x}{(x + 1)^3}$, show that $f'(x) = \frac{g(x)}{( x + 1 )^3}$

96%

101 rated

Answer

To show (f'(x) = \frac{g(x)}{( x + 1 )^3}):

  1. Differentiate (f(x)) using the quotient rule: f(x)=(x+1)3(ddx(3cosx))3cosxddx((x+1)3)(x+1)6f'(x) = \frac{(x + 1)^3(\frac{d}{dx}(3cos\,x)) - 3cos\,x \frac{d}{dx}((x + 1)^3)}{(x + 1)^6}

  2. Calculate the derivatives:

    • (\frac{d}{dx}(3cos,x) = -3sin,x)
    • (\frac{d}{dx}((x + 1)^3) = 3(x + 1)^2)
  3. Substitute these into the expression: f(x)=(x+1)3(3sinx)3cosx3(x+1)2(x+1)6f'(x) = \frac{(x + 1)^3(-3sin\,x) - 3cos\,x \cdot 3(x + 1)^2}{(x + 1)^6}

  4. Simplify the numerator to identify (g(x)): g(x)=3(x+1)(sinx)9cosxg(x) = -3(x + 1)(sin\,x) - 9cos\,x

  5. Finally, express (f'(x) = \frac{g(x)}{( x + 1 )^3}$$.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;