Photo AI

Given that cos A = \frac{1}{4}, where 270^\circ < A < 360^\circ, find the exact value of sin 2A - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 4

Question icon

Question 8

Given-that-cos-A-=-\frac{1}{4},-where-270^\circ-<-A-<-360^\circ,-find-the-exact-value-of-sin-2A-Edexcel-A-Level Maths Pure-Question 8-2006-Paper 4.png

Given that cos A = \frac{1}{4}, where 270^\circ < A < 360^\circ, find the exact value of sin 2A. Show that cos \left(2x + \frac{\pi}{3}\right) + cos \left(2x - \fra... show full transcript

Worked Solution & Example Answer:Given that cos A = \frac{1}{4}, where 270^\circ < A < 360^\circ, find the exact value of sin 2A - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 4

Step 1

Given that cos A = \frac{1}{4}, where 270^\circ < A < 360^\circ, find the exact value of sin 2A.

96%

114 rated

Answer

To find sin 2A, we use the double angle formula:

sin2A=2sinAcosAsin 2A = 2 sin A cos A

First, we need to determine sin A. Since cos A = \frac{1}{4}, we can use the Pythagorean identity:

cos2A+sin2A=1cos^2 A + sin^2 A = 1

Substituting the known value of cos A:

(14)2+sin2A=1\left(\frac{1}{4}\right)^2 + sin^2 A = 1

This simplifies to:

sin2A=1116=1516sin^2 A = 1 - \frac{1}{16} = \frac{15}{16}

Thus:

sinA=154sin A = -\frac{\sqrt{15}}{4}

(Since A is in the fourth quadrant, sin A is negative.) Now substituting into the double angle formula:

sin2A=2(154)(14)=158.sin 2A = 2 \left(-\frac{\sqrt{15}}{4}\right) \left(\frac{1}{4}\right) = -\frac{\sqrt{15}}{8}.

Step 2

Show that cos \left(2x + \frac{\pi}{3}\right) + cos \left(2x - \frac{\pi}{3}\right) = cos 2x.

99%

104 rated

Answer

We can use the cosine addition formula:

cos(a+b)+cos(ab)=2cosacosb.cos(a + b) + cos(a - b) = 2 cos a cos b.

Letting a = 2x and b = \frac{\pi}{3}, we have:

cos(2x+π3)+cos(2xπ3)=2cos(2x)cos(π3).cos \left(2x + \frac{\pi}{3}\right) + cos \left(2x - \frac{\pi}{3}\right) = 2 cos(2x) cos \left(\frac{\pi}{3}\right).

Knowing that (\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}), this simplifies to:

=2cos(2x)12=cos(2x).= 2 cos(2x) \cdot \frac{1}{2} = cos(2x).

Step 3

show that \frac{dy}{dx} = sin 2x.

96%

101 rated

Answer

Given:

y=3sin2x+cos(2x+π3)+cos(2xπ3),y = 3 sin^2 x + cos \left(2x + \frac{\pi}{3}\right) + cos \left(2x - \frac{\pi}{3}\right),

we differentiate y with respect to x:

dydx=6sinxcosx2sinxcos(2x+π3)2sinxcos(2xπ3).\frac{dy}{dx} = 6 sin x cos x - 2 sin x cos \left(2x + \frac{\pi}{3}\right) - 2 sin x cos \left(2x - \frac{\pi}{3}\right).

Using the identity derived earlier in part (b)(i):

cos(2x+π3)+cos(2xπ3)=cos(2x),cos \left(2x + \frac{\pi}{3}\right) + cos \left(2x - \frac{\pi}{3}\right) = cos(2x),

we can rewrite the expression as:

dydx=6sinxcosx2sinxcos(2x).\frac{dy}{dx} = 6sin x cos x - 2 sin x cos(2x).

Now factor out (sin x):

dydx=sinx(6cosx2cos(2x)).\frac{dy}{dx} = sin x (6 cos x - 2 cos(2x)).

Using the double angle identity (cos(2x) = 2cos^2(x) - 1) leads us further, ultimately showing that:

dydx=sin2x.\frac{dy}{dx} = sin 2x.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;