Photo AI

The curve C has equation $$x^2 \tan y = 9$$ $$0 < y < \frac{\pi}{2}$$ a) Show that $$\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$$ b) Prove that C has a point of inflection at $x = \sqrt{27}$ - Edexcel - A-Level Maths Pure - Question 15 - 2020 - Paper 1

Question icon

Question 15

The-curve-C-has-equation--$$x^2-\tan-y-=-9$$--$$0-<-y-<-\frac{\pi}{2}$$--a)-Show-that--$$\frac{dy}{dx}-=-\frac{-18x}{x^4-+-81}$$--b)-Prove-that-C-has-a-point-of-inflection-at-$x-=-\sqrt{27}$-Edexcel-A-Level Maths Pure-Question 15-2020-Paper 1.png

The curve C has equation $$x^2 \tan y = 9$$ $$0 < y < \frac{\pi}{2}$$ a) Show that $$\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$$ b) Prove that C has a point of infl... show full transcript

Worked Solution & Example Answer:The curve C has equation $$x^2 \tan y = 9$$ $$0 < y < \frac{\pi}{2}$$ a) Show that $$\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$$ b) Prove that C has a point of inflection at $x = \sqrt{27}$ - Edexcel - A-Level Maths Pure - Question 15 - 2020 - Paper 1

Step 1

Show that $$\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$$

96%

114 rated

Answer

To differentiate the equation x2tany=9x^2 \tan y = 9 implicitly with respect to x, we apply the product rule:

  1. Differentiate the left side: 2xtany+x2sec2ydydx=02x \tan y + x^2 \sec^2 y \frac{dy}{dx} = 0

  2. Rearrange to isolate dydx:\frac{dy}{dx}: x2sec2ydydx=2xtanyx^2 \sec^2 y \frac{dy}{dx} = -2x \tan y dydx=2xtanyx2sec2y\frac{dy}{dx} = \frac{-2x \tan y}{x^2 \sec^2 y}

  3. Simplify this using the identity: tany=9x2\tan y = \frac{9}{x^2} and sec2y=1+tan2y\sec^2 y = 1 + \tan^2 y, where: sec2y=1+(9x2)2=x4+81x4\sec^2 y = 1 + \left(\frac{9}{x^2}\right)^2 = \frac{x^4 + 81}{x^4}.

  4. Therefore, we substitute back: $$\frac{dy}{dx} = \frac{-2x \cdot \frac{9}{x^2}}{x^2 \cdot \frac{x^4 + 81}{x^4}} = \frac{-18x}{x^4 + 81}.$

Step 2

Prove that C has a point of inflection at $x = \sqrt{27}$

99%

104 rated

Answer

To find the point of inflection, we need to calculate the second derivative:

  1. Starting from the first derivative: dydx=18xx4+81\frac{dy}{dx} = \frac{-18x}{x^4 + 81}

  2. Use the quotient rule to differentiate: d2ydx2=(x4+81)(18)(18x)(4x3)(x4+81)2\frac{d^2y}{dx^2} = \frac{(x^4 + 81)(-18) - (-18x)(4x^3)}{(x^4 + 81)^2}.

  3. Simplifying gives: d2ydx2=18(x4+81)+72x4(x4+81)2=54x418(81)(x4+81)2.\frac{d^2y}{dx^2} = \frac{-18(x^4 + 81) + 72x^4}{(x^4 + 81)^2} = \frac{54x^4 - 18(81)}{(x^4 + 81)^2}.

  4. For a point of inflection, set d2ydx2=0\frac{d^2y}{dx^2} = 0: 54x41458=0x4=145854=27x=27.54x^4 - 1458 = 0 \\ \Rightarrow x^4 = \frac{1458}{54} = 27 \\ \Rightarrow x = \sqrt{27}.

  5. Finally, check the signs of d2ydx2\frac{d^2y}{dx^2} around x=27x = \sqrt{27}. The second derivative changes sign, confirming a point of inflection.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;