Photo AI

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5}$ giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 5

Question icon

Question 7

7.-(a)-Differentiate-with-respect-to-$x$,------(i)-$\frac{1}{x^2}-\ln(3x)$------(ii)-$\frac{1---10x}{(2x---1)^5}$--giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 7-2012-Paper 5.png

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5}$ giving your answer in its simplest form. (b) Giv... show full transcript

Worked Solution & Example Answer:7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^2} \ln(3x)$ (ii) $\frac{1 - 10x}{(2x - 1)^5}$ giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 5

Step 1

(i) $\frac{1}{x^2} \ln(3x)$

96%

114 rated

Answer

To differentiate 1x2ln(3x)\frac{1}{x^2} \ln(3x), we use the product rule, which states if uu and vv are functions of xx, then ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'.

Let:

  • u=1x2u = \frac{1}{x^2}
  • v=ln(3x)v = \ln(3x)

First, we find uu' and vv':

  • u=2x3u' = -\frac{2}{x^3}
  • v=13x3=1xv' = \frac{1}{3x} \cdot 3 = \frac{1}{x} (using the chain rule for ln(3x)\ln(3x))

Now, applying the product rule: ddx(1x2ln(3x))=2x3ln(3x)+1x1x2\frac{d}{dx}\left( \frac{1}{x^2} \ln(3x) \right) = -\frac{2}{x^3} \ln(3x) + \frac{1}{x} \cdot \frac{1}{x^2}
Simplifying: =2ln(3x)x3+1x3= -\frac{2 \ln(3x)}{x^3} + \frac{1}{x^3}
Thus, the final answer is: 12ln(3x)x3\frac{1 - 2 \ln(3x)}{x^3}

Step 2

(ii) $\frac{1 - 10x}{(2x - 1)^5}$

99%

104 rated

Answer

To differentiate 110x(2x1)5\frac{1 - 10x}{(2x - 1)^5}, we use the quotient rule, which states if f(x)=g(x)h(x)f(x) = \frac{g(x)}{h(x)}, then f(x)=g(x)h(x)g(x)h(x)[h(x)]2f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}.

Let:

  • g(x)=110xg(x) = 1 - 10x
  • h(x)=(2x1)5h(x) = (2x - 1)^5

Finding gg' and hh':

  • g=10g' = -10
  • Using the chain rule, h=5(2x1)42=10(2x1)4h' = 5(2x - 1)^4 \cdot 2 = 10(2x - 1)^4

Now applying the quotient rule: f(x)=(10)(2x1)5(110x)(10(2x1)4)(2x1)10f'(x) = \frac{(-10)(2x - 1)^5 - (1 - 10x)(10(2x - 1)^4)}{(2x - 1)^{10}}
Factoring out (2x1)4(2x - 1)^4 gives: f(x)=(2x1)4[(10)(2x1)10(110x)](2x1)10f'(x) = \frac{(2x - 1)^4 [(-10)(2x - 1) - 10(1 - 10x)]}{(2x - 1)^{10}}
Simplifying: =(2x1)4[20x+1010+100x](2x1)10= \frac{(2x - 1)^4 [-20x + 10 - 10 + 100x]}{(2x - 1)^{10}}
=(2x1)4(80x)(2x1)10= \frac{(2x - 1)^4 (80x)}{(2x - 1)^{10}}
Thus, the final answer in simplest form is: 8x(2x1)6\frac{8x}{(2x - 1)^6}

Step 3

Given that $x = 3 \tan(2y)$ find $\frac{dy}{dx}$ in terms of $x.$

96%

101 rated

Answer

To find dydx\frac{dy}{dx}, we differentiate both sides with respect to xx.

Starting with x=3tan(2y)x = 3 \tan(2y), we differentiate with implicit differentiation: dxdx=3sec2(2y)2dydx\frac{dx}{dx} = 3 \cdot \sec^2(2y) \cdot 2 \frac{dy}{dx}
This simplifies to: 1=6sec2(2y)dydx1 = 6 \sec^2(2y) \frac{dy}{dx}
Thus: dydx=16sec2(2y)\frac{dy}{dx} = \frac{1}{6 \sec^2(2y)}

Now, substituting yy in terms of xx, from the equation: tan(2y)=x3\tan(2y) = \frac{x}{3} implies that :
2y=tan1(x3)2y = \tan^{-1}\left(\frac{x}{3}\right)
Using the identity sec2(2y)=1+tan2(2y)\sec^2(2y) = 1 + \tan^2(2y) gives: sec2(2y)=1+(x3)2\sec^2(2y) = 1 + \left(\frac{x}{3}\right)^2
Substituting this into our expression for dydx\frac{dy}{dx} we get: dydx=16(1+x29)=16(9+x29)\frac{dy}{dx} = \frac{1}{6\left(1 + \frac{x^2}{9}\right)} = \frac{1}{6 \left(\frac{9 + x^2}{9}\right)}
Thus, dydx=96(9+x2)=32(9+x2)\frac{dy}{dx} = \frac{9}{6(9 + x^2)} = \frac{3}{2(9 + x^2)}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;