Photo AI

3. (a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Question icon

Question 4

3.-(a)-Express-$5-\cos-x---3-\sin-x$-in-the-form-$R-\cos(x-+-\alpha)$,-where-$R->-0$-and-$0-<-\alpha-<-\frac{1}{2}-\pi$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 2.png

3. (a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$. (b) Hence, or otherwise, solve the equatio... show full transcript

Worked Solution & Example Answer:3. (a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2} \pi$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 2

Step 1

Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$

96%

114 rated

Answer

To express the equation in the desired form, we begin by comparing it with the formula:

Rcos(x+α)=RcosxcosαRsinxsinα.R \cos(x + \alpha) = R \cos x \cos \alpha - R \sin x \sin \alpha.

First, equate the coefficients:

  • Rcosα=5R \cos \alpha = 5
  • Rsinα=3R \sin \alpha = -3

Next, we calculate RR using the Pythagorean identity:

R=(52)+(32)=25+9=34.R = \sqrt{(5^2) + (-3^2)} = \sqrt{25 + 9} = \sqrt{34}.

Now we can find \alpha:

tanα=RsinαRcosα=35    α=tan1(35).\tan \alpha = \frac{R \sin \alpha}{R \cos \alpha} = \frac{-3}{5} \implies \alpha = \tan^{-1}\left(-\frac{3}{5}\right).

Thus, we can express it as:

5cosx3sinx=34cos(x+tan1(35)).5 \cos x - 3 \sin x = \sqrt{34} \cos\left(x + \tan^{-1}\left(-\frac{3}{5}\right)\right).

Step 2

Solve the equation $5 \cos x - 3 \sin x = 4$

99%

104 rated

Answer

Using the result from part (a), we solve:

34cos(x+tan1(35))=4.\sqrt{34} \cos\left(x + \tan^{-1}\left(-\frac{3}{5}\right)\right) = 4.

This simplifies to:

cos(x+tan1(35))=434.\cos\left(x + \tan^{-1}\left(-\frac{3}{5}\right)\right) = \frac{4}{\sqrt{34}}.

Calculate \tan^{-1}\left(-\frac{3}{5}\right):

Let \alpha = \tan^{-1}( -0.5404 ) \approx -0.5404.

Thus, we rewrite the equation as:

x0.5404=cos1(434).x - 0.5404 = \cos^{-1}\left(\frac{4}{\sqrt{34}}\right).

Calculating gives \cos^{-1}(0.6859) which yields the principal solution:

x=0.5404+0.8150.x = 0.5404 + 0.8150.

This results in:

  • First solution: x1.3554x \approx 1.3554 (already in range).

Finding the second solution: x=2π(0.5404+0.8150)6.02880.5404=5.4884.x = 2\pi - (0.5404 + 0.8150) \approx 6.0288 - 0.5404 = 5.4884.

Finally, rounding off gives the answers: x1.36,5.49.x \approx 1.36, 5.49.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;