Photo AI

Express $7 \cos x - 24 \sin x$ in the form $R \cos (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 4

Question icon

Question 3

Express-$7-\cos-x---24-\sin-x$-in-the-form-$R-\cos-(x-+-\alpha)$-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 3-2011-Paper 4.png

Express $7 \cos x - 24 \sin x$ in the form $R \cos (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Give the value of $\alpha$ to 3 decimal places. Hen... show full transcript

Worked Solution & Example Answer:Express $7 \cos x - 24 \sin x$ in the form $R \cos (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 4

Step 1

Express $7 \cos x - 24 \sin x$ in the form $R \cos (x + \alpha)$

96%

114 rated

Answer

To express 7cosx24sinx7 \cos x - 24 \sin x in the form Rcos(x+α)R \cos (x + \alpha), we start by finding RR and α\alpha:

  1. Calculate RR:
    R=72+(24)2=49+576=625=25.R = \sqrt{7^2 + (-24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25.
    Thus, R=25R = 25.

  2. Determine α\alpha:
    tanα=247=247.\tan \alpha = \frac{|-24|}{7} = \frac{24}{7}.
    Now, use a calculator to find α\alpha:
    α=tan1(247)1.287.\alpha = \tan^{-1}\left(\frac{24}{7}\right) \approx 1.287.
    Hence, the expression can be rewritten as: 7cosx24sinx=25cos(x+1.287).7 \cos x - 24 \sin x = 25 \cos (x + 1.287).

Step 2

Hence write down the minimum value of $7 \cos x - 24 \sin x$

99%

104 rated

Answer

The minimum value of 7cosx24sinx7 \cos x - 24 \sin x can be derived from the maximum value of the cosine function. Since the range of cos\cos is between -1 and 1, the minimum value of the expression is: R=25.-R = -25.

Step 3

Solve, for $0 \leq x < 2\pi$, the equation $7 \cos x - 24 \sin x = 10$

96%

101 rated

Answer

To solve the equation: 7cosx24sinx=107 \cos x - 24 \sin x = 10
Rewriting it using the previously found expression: 25cos(x+1.287)=1025 \cos (x + 1.287) = 10
Simplifying gives us: cos(x+1.287)=1025=0.4.\cos (x + 1.287) = \frac{10}{25} = 0.4.
Now, find x+1.287x + 1.287: x+1.287=cos1(0.4)1.159, or 1.159.x + 1.287 = \cos^{-1}(0.4) \approx 1.159, \text{ or } -1.159.
Thus, xx values:

  1. For x+1.287=1.159x + 1.287 = 1.159, we have: x1.1591.2870.128(Not valid for this range)x \approx 1.159 - 1.287 \approx -0.128 \Rightarrow \text{(Not valid for this range)}
  2. For the second value, apply: x+1.287=2π1.159    x6.1241.2874.837.x + 1.287 = 2\pi - 1.159 \implies x \approx 6.124 - 1.287 \approx 4.837.
  3. Another solution: x+1.287=2π+1.159    x2π+1.1591.287x + 1.287 = 2\pi + 1.159 \implies x \approx 2\pi + 1.159 - 1.287 Hence obtaining:
  • Valid solutions are approximately: x4.84 and x1.36x \approx 4.84 \text{ and } x \approx 1.36 Therefore, the solutions to two decimal places are: x4.84 and x1.36.x \approx 4.84 \text{ and } x \approx 1.36.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;