Photo AI

The function f is defined by $f(x) = \frac{3x - 7}{x - 2} \quad (x \in \mathbb{R}, x \neq 2)$ (a) Find $f^{-1}(7)$ (b) Show that $f(f(x)) = \frac{ax + b}{x - 3}$ where a and b are integers to be found. - Edexcel - A-Level Maths Pure - Question 6 - 2020 - Paper 1

Question icon

Question 6

The-function-f-is-defined-by--$f(x)-=-\frac{3x---7}{x---2}-\quad-(x-\in-\mathbb{R},-x-\neq-2)$--(a)-Find-$f^{-1}(7)$--(b)-Show-that-$f(f(x))-=-\frac{ax-+-b}{x---3}$-where-a-and-b-are-integers-to-be-found.-Edexcel-A-Level Maths Pure-Question 6-2020-Paper 1.png

The function f is defined by $f(x) = \frac{3x - 7}{x - 2} \quad (x \in \mathbb{R}, x \neq 2)$ (a) Find $f^{-1}(7)$ (b) Show that $f(f(x)) = \frac{ax + b}{x - 3}$ ... show full transcript

Worked Solution & Example Answer:The function f is defined by $f(x) = \frac{3x - 7}{x - 2} \quad (x \in \mathbb{R}, x \neq 2)$ (a) Find $f^{-1}(7)$ (b) Show that $f(f(x)) = \frac{ax + b}{x - 3}$ where a and b are integers to be found. - Edexcel - A-Level Maths Pure - Question 6 - 2020 - Paper 1

Step 1

Find $f^{-1}(7)$

96%

114 rated

Answer

To find the inverse function, we start by setting

f(x)=7f(x) = 7

This gives us:

3x7x2=7\frac{3x - 7}{x - 2} = 7

Next, we multiply both sides by (x2)(x - 2) to eliminate the fraction:

3x7=7(x2)3x - 7 = 7(x - 2)

Expanding the right-hand side:

3x7=7x143x - 7 = 7x - 14

Rearranging terms to bring all xx terms to one side:

3x7x=14+73x - 7x = -14 + 7

4x=7-4x = -7

Dividing by -4:

x=74x = \frac{7}{4}

Thus, we have:

f1(7)=74f^{-1}(7) = \frac{7}{4}

Step 2

Show that $f(f(x)) = \frac{ax + b}{x - 3}$

99%

104 rated

Answer

We start by substituting f(x)f(x) into itself:

f(f(x))=f(3x7x2)f(f(x)) = f\left(\frac{3x - 7}{x - 2}\right)

Substituting into the function:

=3(3x7x2)7(3x7x2)2= \frac{3\left(\frac{3x - 7}{x - 2}\right) - 7}{\left(\frac{3x - 7}{x - 2}\right) - 2}

Calculating the numerator:

=9x21x273x72(x2)x2= \frac{\frac{9x - 21}{x - 2} - 7}{\frac{3x - 7 - 2(x - 2)}{x - 2}}

First, simplify the numerator:

=9x217(x2)x23x72(x2)x2= \frac{\frac{9x - 21 - 7(x - 2)}{x - 2}}{\frac{3x - 7 - 2(x - 2)}{x - 2}}

Expanding and combining terms in the numerator:

=9x217x+143x72x+4= \frac{9x - 21 - 7x + 14}{3x - 7 - 2x + 4}

=2x7x3= \frac{2x - 7}{x - 3}

Thus, a=2a = 2 and b=7b = -7, and we verify:

f(f(x))=2x7x3f(f(x)) = \frac{2x - 7}{x - 3}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;