Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = ext{(} rac{ oot{3} ext{}}{2} ext{)} ext{sin }2t$, $y = 4 ext{cos}^2 t, 0 ext{ } ext{≤ }t ext{ ≤ } ext{π}$ (a) Show that $ rac{dy}{dx} = k( rac{ oot{3}}{3}) an 2t$, where $k$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 7

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=---ext{(}-rac{-oot{3}-ext{}}{2}-ext{)}-ext{sin--}2t$,---$y-=-4--ext{cos}^2-t,---0--ext{--}-ext{≤--}t---ext{-≤--}-ext{π}$--(a)-Show-that-$-rac{dy}{dx}-=-k(-rac{-oot{3}}{3})-an-2t$,-where-$k$-is-a-constant-to-be-determined-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 7.png

Figure 2 shows a sketch of the curve C with parametric equations $x = ext{(} rac{ oot{3} ext{}}{2} ext{)} ext{sin }2t$, $y = 4 ext{cos}^2 t, 0 ext{ } ext{... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = ext{(} rac{ oot{3} ext{}}{2} ext{)} ext{sin }2t$, $y = 4 ext{cos}^2 t, 0 ext{ } ext{≤ }t ext{ ≤ } ext{π}$ (a) Show that $ rac{dy}{dx} = k( rac{ oot{3}}{3}) an 2t$, where $k$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 7

Step 1

Show that $\frac{dy}{dx} = k(\frac{\sqrt{3}}{3}) \tan 2t$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we start by calculating dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}:

  1. Find dxdt\frac{dx}{dt}:
    [\frac{dx}{dt} = \frac{d}{dt}(\sqrt{3}\sin 2t) = \sqrt{3}\cdot 2\cos 2t = 2\sqrt{3}\cos 2t]\

  2. Find dydt\frac{dy}{dt}:
    [\frac{dy}{dt} = \frac{d}{dt}(4\cos^2 t) = 4\cdot 2\cos t(-\sin t) = -8\cos t \sin t]\

  3. Find dydx\frac{dy}{dx}:
    [\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-8\cos t \sin t}{2\sqrt{3}\cos 2t}]\

Using the identity cos2t=cos2tsin2t\cos 2t = \cos^2 t - \sin^2 t, we simplify:
[\frac{dy}{dx} = \frac{-8\cos t \sin t}{2\sqrt{3}(\cos^2 t - \sin^2 t)}]\

Factoring out 4-4 gives:
[\frac{dy}{dx} = -\frac{4\sin(2t)}{\sqrt{3} \cos(2t)}]\

Now using tan(2t)=sin(2t)cos(2t)\tan(2t) = \frac{\sin(2t)}{\cos(2t)}, we express this as:
[\frac{dy}{dx} = -\frac{4}{\sqrt{3}}\tan 2t]\

Thus, we have:
[\frac{dy}{dx} = k(\frac{\sqrt{3}}{3})\tan 2t, \text{ where } k = -4]

Step 2

Find an equation of the tangent to C at the point where $t = \frac{π}{3}$

99%

104 rated

Answer

First, we need to find the coordinates of the point when t=π3t = \frac{π}{3}:

  1. Calculate xx and yy:
    [x = \sqrt{3}\sin(2 \cdot \frac{\pi}{3}) = \sqrt{3}\sin(\frac{2\pi}{3}) = \sqrt{3}\cdot \frac{\sqrt{3}}{2} = \frac{3}{2}]\
    [y = 4\cos^2(\frac{\pi}{3}) = 4\cdot(\frac{1}{2})^2 = 4\cdot\frac{1}{4} = 1]\

Now, we find the slope of the tangent line:

  1. Calculate the slope (m):
    [m = \frac{dy}{dx} \text{ at } t = \frac{\pi}{3} = -\frac{4}{\sqrt{3}}\tan(2 \cdot \frac{\pi}{3})]

Since tan(2π3)=3\tan(\frac{2\pi}{3}) = -\sqrt{3}, we have:
[m = -\frac{4}{\sqrt{3}}(-\sqrt{3}) = 4]\

  1. Use point-slope form to write the equation of the tangent:
    The point is (32,1)\left(\frac{3}{2}, 1\right) and the slope is 44: [y - 1 = 4(x - \frac{3}{2})]
    Simplifying gives:
    [y = 4x - 6 + 1 = 4x - 5]\
    Hence, in the form y=ax+by = ax + b: a=4a = 4, b=5b = -5.

Step 3

Find a Cartesian equation of C

96%

101 rated

Answer

We start from the parametric equations:
[x = \sqrt{3}\sin 2t, \quad y = 4\cos^2 t]\

  1. Express sin2t\sin 2t in terms of yy:
    From y=4cos2ty = 4\cos^2 t, we have cos2t=y4\cos^2 t = \frac{y}{4}. Using sin2t=1cos2t\sin^2 t = 1 - \cos^2 t, we can write: [\sin^2 t = 1 - \frac{y}{4} = \frac{4-y}{4}]\

Since sin2t=2sintcost\sin 2t = 2 \sin t \cos t, we need sint\sin t and cost\cos t: [\sin^2 t = \frac{4-y}{4}, \quad \cos^2 t = \frac{y}{4}]\

  1. Use these in the equation for sin2t\sin 2t:
    [\sin 2t = 2\sqrt{\frac{4-y}{4}} \sqrt{\frac{y}{4}} = \frac{1}{2}\sqrt{(4-y)y}]\

  2. Substituting in the equation:
    Now, since x=3sin2tx = \sqrt{3}\sin 2t, we have
    [x = \sqrt{3}\cdot\frac{1}{2}\sqrt{(4-y)y}]

Squaring gives:
[x^2 = \frac{3}{4}(4-y)y]\

Which can be rearranged to find the Cartesian equation.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;