Photo AI

7. (a) Show that $$\csc 2x + \cot 2x = \cot x, \quad x \neq n \cdot 90^\circ, \quad n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $0 \leq \theta < 180^\circ$, $$\csc (40 + 10^\circ) + \cot(40 + 10^\circ) = \sqrt{3}$$ You must show your working - Edexcel - A-Level Maths Pure - Question 9 - 2014 - Paper 5

Question icon

Question 9

7.-(a)-Show-that--$$\csc-2x-+-\cot-2x-=-\cot-x,-\quad-x-\neq-n-\cdot-90^\circ,-\quad-n-\in-\mathbb{Z}$$--(b)-Hence,-or-otherwise,-solve,-for-$0-\leq-\theta-<-180^\circ$,--$$\csc-(40-+-10^\circ)-+-\cot(40-+-10^\circ)-=-\sqrt{3}$$--You-must-show-your-working-Edexcel-A-Level Maths Pure-Question 9-2014-Paper 5.png

7. (a) Show that $$\csc 2x + \cot 2x = \cot x, \quad x \neq n \cdot 90^\circ, \quad n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $0 \leq \theta < 180^\ci... show full transcript

Worked Solution & Example Answer:7. (a) Show that $$\csc 2x + \cot 2x = \cot x, \quad x \neq n \cdot 90^\circ, \quad n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $0 \leq \theta < 180^\circ$, $$\csc (40 + 10^\circ) + \cot(40 + 10^\circ) = \sqrt{3}$$ You must show your working - Edexcel - A-Level Maths Pure - Question 9 - 2014 - Paper 5

Step 1

Show that \( \csc 2x + \cot 2x = \cot x \)

96%

114 rated

Answer

To show that ( \csc 2x + \cot 2x = \cot x ), we start with the left-hand side:

csc2x+cot2x=1sin2x+cos2xsin2x=1+cos2xsin2x\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x} = \frac{1 + \cos 2x}{\sin 2x}

Using the double angle identity, ( \cos 2x = 1 - 2\sin^2 x ), we can substitute it in:

=1+(12sin2x)sin2x=22sin2xsin2x= \frac{1 + (1 - 2\sin^2 x)}{\sin 2x} = \frac{2 - 2\sin^2 x}{\sin 2x}

Now, recall that ( \sin 2x = 2\sin x \cos x ):

=2(1sin2x)2sinxcosx=2cos2x2sinxcosx=cosxsinx=cotx= \frac{2(1 - \sin^2 x)}{2\sin x \cos x} = \frac{2\cos^2 x}{2\sin x \cos x} = \frac{\cos x}{\sin x} = \cot x Thus, we have shown that ( \csc 2x + \cot 2x = \cot x ).

Step 2

Hence, or otherwise, solve, for \(0 \leq \theta < 180^\circ\): \(\csc(40 + 10^\circ) + \cot(40 + 10^\circ) = \sqrt{3}\)

99%

104 rated

Answer

To solve the equation:

csc(50)+cot(50)=3,\csc(50^\circ) + \cot(50^\circ) = \sqrt{3},

We first express ( \csc ) and ( \cot ) in terms of ( \sin ) and ( \cos ):

1sin(50)+cos(50)sin(50)=3\frac{1}{\sin(50^\circ)} + \frac{\cos(50^\circ)}{\sin(50^\circ)} = \sqrt{3}

This simplifies to:

1+cos(50)sin(50)=3\frac{1 + \cos(50^\circ)}{\sin(50^\circ)} = \sqrt{3}

We can cross-multiply to obtain:

1+cos(50)=3sin(50)1 + \cos(50^\circ) = \sqrt{3} \sin(50^\circ)

Now, remember that: sin(50)=sin(9040)=cos(40)\sin(50^\circ) = \sin(90^\circ - 40^\circ) = \cos(40^\circ)

Substituting gives us:

1+cos(50)=3cos(40)1 + \cos(50^\circ) = \sqrt{3} \cos(40^\circ)

Now, we need to evaluate (\cos(50^\circ)) and solve for the angle. You may use a calculator or values from trigonometric tables. This would lead to the required solution.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;