Photo AI
Question 5
A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T ext{ °C}$, $t$ minutes after it enters the liquid, is given by $$T = 400 e^{-0... show full transcript
Step 1
Step 2
Answer
To find when , we set up the equation:
This simplifies to:
Dividing both sides by 400 gives:
e^{-0.06t} = rac{275}{400}.
Taking the natural logarithm of both sides:
-0.06t = ext{ln}rac{275}{400}.
Solving for :
t = rac{- ext{ln}(0.6875)}{0.06} ext{ minutes}.
Calculating this value:
Step 3
Answer
To find the rate of change of the temperature with respect to time, we differentiate with respect to :
rac{dT}{dt} = -24 e^{-0.06t}.
Substituting :
rac{dT}{dt} = -24 e^{-0.06(50)}.
Calculating :
Thus,
rac{dT}{dt} = -24 imes 0.04979 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } = -1.19 ext{ °C/min}.
Rounding to 3 significant figures:
Rate of decrease = -1.19 °C/min.
Step 4
Answer
From the equation:
we observe that as $t o ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } + ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } + ext{ } ext{ } ext{ } ext{ } + ext{ } ext{ } ext{ } ext{ } ext{ } + ext{ } ext{ } ext{ } ext{ } o ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } { ightarrow ext{ } ext{ } ext{ } + ext{ } ext{ } ext{ } ext{ } ext{ }}{ ightarrow ext{ } 25}.$$
The term approaches 0 as increases, and thus will approach 25 °C but never actually reach it. Therefore, the temperature of the ball can never fall below 25 °C, making it impossible for it to reach 20 °C.
Report Improved Results
Recommend to friends
Students Supported
Questions answered