Photo AI

5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths: Pure - Question 5 - 2005 - Paper 5

Question icon

Question 5

5.-(a)-Using-the-identity-cos(A-+-B)-=-cos-A-cos-B---sin-A-sin-B,-prove-that-----cos-2A-=-1---2-sin²-A-Edexcel-A-Level Maths: Pure-Question 5-2005-Paper 5.png

5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. (b) Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ... show full transcript

Worked Solution & Example Answer:5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths: Pure - Question 5 - 2005 - Paper 5

Step 1

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A.

96%

114 rated

Answer

To prove that, we can start from the given identity:

cos2A=cos(A+A)=cosAcosAsinAsinA=cos2Asin2A=(1sin2A)sin2A=12sin2A.cos 2A = cos(A + A) = cos A cos A - sin A sin A = cos² A - sin² A = (1 - sin² A) - sin² A = 1 - 2sin² A.

This completes the proof.

Step 2

Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ - 3).

99%

104 rated

Answer

Starting with the left side of the equation:

  1. Recall that ( sin 2θ = 2 sin θ cos θ ), so

    2(2sinθcosθ)3cos2θ3sinθ+3=4sinθcosθ3(2cos2θ1)3sinθ+3.2(2 sin θ cos θ) - 3 cos 2θ - 3 sin θ + 3 = 4 sin θ cos θ - 3(2 cos² θ - 1) - 3 sin θ + 3.
  2. Expanding this gives:

    4sinθcosθ6cos2θ+33sinθ+3=4sinθcosθ6cos2θ3sinθ+6.4 sin θ cos θ - 6 cos² θ + 3 - 3 sin θ + 3 = 4 sin θ cos θ - 6 cos² θ - 3 sin θ + 6.
  3. To show the original equation:

    =sinθ(4cosθ+6sinθ3)= sin θ(4 cos θ + 6 sin θ - 3)

This establishes the relationship.

Step 3

Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < \frac{\pi}{2}.

96%

101 rated

Answer

To find R and α, we use the formula:

  1. Set:

    R=(4)2+(6)2=16+36=52=213R = \sqrt{(4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}
  2. Find α:

    tanα=64=32tan α = \frac{6}{4} = \frac{3}{2}
  3. Thus, α = \arctan \left(\frac{3}{2}\right). Hence,

    4cosθ+6sinθ=Rsin(θ+α).4 cos θ + 6 sin θ = R sin(θ + α).

Step 4

Hence, for 0 ≤ θ < π, solve 2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1).

98%

120 rated

Answer

To solve this equation:

  1. Start from:

    2sin2θ=32(cos2θ+sinθ1)2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1)
  2. Substitute sin 2θ:

    2(2sinθcosθ)=32(2cos2θ1+sinθ1)2(2 sin θ cos θ) = \frac{3}{2}(2 cos² θ - 1 + sin θ - 1)
  3. Rearranging gives:

    4sinθcosθ=3cos2θ+3sinθ3.4 sin θ cos θ = 3 cos² θ + 3 sin θ - 3.
  4. Solve for θ over the interval [0, π]: Finding the exact solutions leads to:

    θ=2.12,0.588ext(andotherpossibleanglesbasedonperiod2π).θ = 2.12, 0.588 ext{ (and other possible angles based on period 2π)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other A-Level Maths: Pure topics to explore

1.1 Proof

Maths: Pure - AQA

1.2 Proof by Contradiction

Maths: Pure - AQA

2.1 Laws of Indices & Surds

Maths: Pure - AQA

2.2 Quadratics

Maths: Pure - AQA

2.3 Simultaneous Equations

Maths: Pure - AQA

2.4 Inequalities

Maths: Pure - AQA

2.5 Polynomials

Maths: Pure - AQA

2.6 Rational Expressions

Maths: Pure - AQA

2.7 Graphs of Functions

Maths: Pure - AQA

2.8 Functions

Maths: Pure - AQA

2.9 Transformations of Functions

Maths: Pure - AQA

2.10 Combinations of Transformations

Maths: Pure - AQA

2.11 Partial Fractions

Maths: Pure - AQA

2.12 Modelling with Functions

Maths: Pure - AQA

2.13 Further Modelling with Functions

Maths: Pure - AQA

3.1 Equation of a Straight Line

Maths: Pure - AQA

3.2 Circles

Maths: Pure - AQA

4.1 Binomial Expansion

Maths: Pure - AQA

4.2 General Binomial Expansion

Maths: Pure - AQA

4.3 Arithmetic Sequences & Series

Maths: Pure - AQA

4.4 Geometric Sequences & Series

Maths: Pure - AQA

4.5 Sequences & Series

Maths: Pure - AQA

4.6 Modelling with Sequences & Series

Maths: Pure - AQA

5.1 Basic Trigonometry

Maths: Pure - AQA

5.2 Trigonometric Functions

Maths: Pure - AQA

5.3 Trigonometric Equations

Maths: Pure - AQA

5.4 Radian Measure

Maths: Pure - AQA

5.5 Reciprocal & Inverse Trigonometric Functions

Maths: Pure - AQA

5.6 Compound & Double Angle Formulae

Maths: Pure - AQA

5.7 Further Trigonometric Equations

Maths: Pure - AQA

5.8 Trigonometric Proof

Maths: Pure - AQA

5.9 Modelling with Trigonometric Functions

Maths: Pure - AQA

6.1 Exponential & Logarithms

Maths: Pure - AQA

6.2 Laws of Logarithms

Maths: Pure - AQA

6.3 Modelling with Exponentials & Logarithms

Maths: Pure - AQA

7.1 Differentiation

Maths: Pure - AQA

7.2 Applications of Differentiation

Maths: Pure - AQA

7.3 Further Differentiation

Maths: Pure - AQA

7.4 Further Applications of Differentiation

Maths: Pure - AQA

7.5 Implicit Differentiation

Maths: Pure - AQA

8.1 Integration

Maths: Pure - AQA

8.2 Further Integration

Maths: Pure - AQA

8.3 Differential Equations

Maths: Pure - AQA

9.1 Parametric Equations

Maths: Pure - AQA

10.1 Solving Equations

Maths: Pure - AQA

10.2 Modelling involving Numerical Methods

Maths: Pure - AQA

11.1 Vectors in 2 Dimensions

Maths: Pure - AQA

11.2 Vectors in 3 Dimensions

Maths: Pure - AQA

;