Photo AI
Question 7
Show that: i) \( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \quad x \neq (n - \frac{1}{2})\pi, \quad n \in \mathbb{Z}. \) ii) \( \frac{1}{2} (\cos 2x -... show full transcript
Step 1
Answer
To prove the identity, we start with the left-hand side:
[ \frac{\cos 2x}{\cos x + \sin x} = \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} ]
Now, use the identity (\cos^2 x - \sin^2 x = (\cos x + \sin x)(\cos x - \sin x)):
[ \frac{(\cos x + \sin x)(\cos x - \sin x)}{\cos x + \sin x} = \cos x - \sin x. ]
Thus, we have shown that ( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x ).
Step 2
Answer
Starting from the left-hand side:
[ \frac{1}{2}(\cos 2x - \sin 2x) = \frac{1}{2}(\cos^2 x - \sin^2 x - 2\sin x \cos x) = \frac{1}{2}((\cos^2 x - \sin^2 x) - 2\sin x \cos x) ]
Now apply the identities for (\cos 2x) and (\sin 2x) to simplify further:
[ \cos^2 x - \sin^2 x = (\cos x - \sin x)(\cos x + \sin x). ]
Thus, we can equate to find the right-hand side:
[ \cos^2 x - \sin x = \cos^2 x - \cos x \sin x - \frac{1}{2}. ]
Step 3
Step 4
Answer
To solve (\sin 2\theta = \cos 2\theta), we can divide both sides by ( \cos 2\theta ):
[ \tan 2\theta = 1. ]
The solutions for (2\theta) in the range (0 < 2\theta < 4\pi) are:
[ 2\theta = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z}. ]
Thus, solving for (\theta) gives:
[ \theta = \frac{\pi}{8} + \frac{n\pi}{2}\text{, for } \theta = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}. ]
This falls within the specified range.
Report Improved Results
Recommend to friends
Students Supported
Questions answered