Photo AI

Figure 2 shows a sketch of the curve with equation $y = x^3 ext{ ln}(x^2 + 2)$, $x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 5

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-with-equation-$y-=-x^3--ext{-ln}(x^2-+-2)$,-$x->-0$-Edexcel-A-Level Maths Pure-Question 6-2011-Paper 5.png

Figure 2 shows a sketch of the curve with equation $y = x^3 ext{ ln}(x^2 + 2)$, $x > 0$. The finite region $R$, shown shaded in Figure 2, is bounded by the curve, ... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve with equation $y = x^3 ext{ ln}(x^2 + 2)$, $x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 5

Step 1

Complete the table above giving the missing values of $y$ to 4 decimal places.

96%

114 rated

Answer

To find the missing values of yy, we compute:

  1. For x = rac{ oot{2}}{4}:

oot{2}}{4} igg)^3 ext{ ln} igg( igg( rac{ oot{2}}{4} igg)^2 + 2 igg)$$

After evaluating, we obtain:

ightarrow 0.3240$$ 2. For $x = rac{3 oot{2}}{4}$: $$y = igg( rac{3 oot{2}}{4} igg)^3 ext{ ln} igg( igg( rac{3 oot{2}}{4} igg)^2 + 2 igg)$$ This evaluates to: $$y ightarrow 1.3596$$ 3. For $x = rac{ oot{2}}{2}$: $$y = igg( rac{ oot{2}}{2} igg)^3 ext{ ln} igg( igg( rac{ oot{2}}{2} igg)^2 + 2 igg)$$ This results in: $$y ightarrow 3.9210$$

Step 2

Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving your answer to 2 decimal places.

99%

104 rated

Answer

Applying the trapezium rule, we calculate:

oot{2}}{4} igg [ y_0 + 2y_1 + 2y_2 + y_3 igg ]$$ Substituting the values from the table: - $y_0 = 0$ - $y_1 = 0.3240$ - $y_2 = 1.3596$ - $y_3 = 3.9210$ Thus, $$ ext{Area}(R) = rac{1}{2} imes rac{ oot{2}}{4} (0 + 2(0.3240) + 2(1.3596) + 3.9210)$$ After computation, we find: $$ ext{Area}(R) ext{ } ightarrow 1.30$$

Step 3

Use the substitution $u = x^2 + 2$ to show that the area of $R$ is $\frac{1}{2} \int^{\frac{ oot{2}}{2}}_{2} (u-2) \ln(u) \, du$.

96%

101 rated

Answer

To perform the substitution, we have:

ightarrow dx = \frac{du}{2x}$$ And from the substitution: 1. When $x = 0$, $u = 2$. 2. When $x = \frac{ oot{2}}{2}$, $u = 4$. Therefore, we rewriting the integral: $$ ext{Area}(R) = \int_{2}^{4} (u-2) \ln(u) \frac{du}{2}$$ Hence, $$ ext{Area}(R) = \frac{1}{2}\int_{2}^{4} (u-2) \ln(u) \, du$$

Step 4

Hence, or otherwise, find the exact area of $R$.

98%

120 rated

Answer

To find the exact area, we need to compute the integral:

1224(u2)ln(u)du\frac{1}{2} \int_{2}^{4} (u-2)\ln(u) \, du

Using integration by parts, we let:

  • v=ln(u)v = \ln(u), dv=1ududv = \frac{1}{u} \, du
  • w=u2w = u-2, thus dw=dudw = du

Evaluating, we find:

\text{Area}(R) = \frac{1}{2}\Bigg [ igg( (u-2)\ln(u) - \int (u-2)\frac{1}{u}igg)\Bigg ]^{4}_{2}

After evaluating this expression between the bounds, we get:

  1. Substitute u=4u=4 and u=2u=2.

The final answer gives:

Area(R)=2(ln(4)+1)\text{Area}(R) = 2(\ln(4) + 1)

This is the exact area of region RR.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;