Photo AI

Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_0^{3} \frac{x}{\sqrt{4 - x}} dx = \lambda \int_0^{\frac{\pi}{2}} \sin^2 \theta d\theta$$ where $\lambda$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 4

Question icon

Question 8

Given-that-$y->-0$,-find-$$\int-\frac{3y---4}{y(3y-+-2)}-dy$$--(ii)-(a)-Use-the-substitution-$x-=-4-\sin^2-\theta$-to-show-that-$$\int_0^{3}-\frac{x}{\sqrt{4---x}}-dx-=-\lambda-\int_0^{\frac{\pi}{2}}-\sin^2-\theta-d\theta$$-where-$\lambda$-is-a-constant-to-be-determined-Edexcel-A-Level Maths Pure-Question 8-2016-Paper 4.png

Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_0^{3} \frac{x}{\sqrt{4 - x}} d... show full transcript

Worked Solution & Example Answer:Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_0^{3} \frac{x}{\sqrt{4 - x}} dx = \lambda \int_0^{\frac{\pi}{2}} \sin^2 \theta d\theta$$ where $\lambda$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 4

Step 1

Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} dy$$

96%

114 rated

Answer

To solve the integral, we can start by decomposing the fraction:

3y4y(3y+2)dy=(Ay+B3y+2)dy\int \frac{3y - 4}{y(3y + 2)} dy = \int \left( \frac{A}{y} + \frac{B}{3y + 2} \right) dy

Finding constants A and B requires solving:

3y4=A(3y+2)+By3y - 4 = A(3y + 2) + By

From comparison, we get:

  1. A+B=3A + B = 3 \n2. 2A=42A = -4

From the 2nd equation, A=2A = -2 and substituting back gives \nB=5B = 5.

Thus, we can write:

(2y+53y+2)dy\int \left( -\frac{2}{y} + \frac{5}{3y + 2} \right) dy

Integrating both terms separately:

=2lny+53ln3y+2+C= -2 \ln |y| + \frac{5}{3} \ln |3y + 2| + C Where C is the constant of integration.

Step 2

Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_0^{3} \frac{x}{\sqrt{4 - x}} dx = \lambda \int_0^{\frac{\pi}{2}} \sin^2 \theta d\theta$$

99%

104 rated

Answer

Using the substitution x=4sin2θx = 4 \sin^2 \theta, we find:

  • The differential dx=8sinθcosθdθdx = 8 \sin \theta \cos \theta d\theta.
  • Limits change from x=0x=0 (when θ=0\theta = 0) to x=3x=3 (which gives θ=π6\theta = \frac{\pi}{6}).

We rewrite the integral:

03x4xdx=0π64sin2θ44sin2θ(8sinθcosθ)dθ\int_0^{3} \frac{x}{\sqrt{4 - x}} dx = \int_0^{\frac{\pi}{6}} \frac{4 \sin^2 \theta}{\sqrt{4 - 4 \sin^2 \theta}} (8 \sin \theta \cos \theta) d\theta

Since 4(1sin2θ)=2cosθ \sqrt{4(1 - \sin^2 \theta)} = 2 \cos \theta, this becomes:

=0π64sin2θ8sinθcosθ2cosθdθ= \int_0^{\frac{\pi}{6}} \frac{4 \sin^2 \theta \cdot 8 \sin \theta \cos \theta}{2 \cos \theta} d\theta =160π6sin3θdθ= 16 \int_0^{\frac{\pi}{6}} \sin^3 \theta d\theta

This integral can be evaluated using the reduction formula or integration by parts, leading to the final identity involving λ=16\lambda = 16.

Step 3

Hence use integration to find $$\int \frac{x}{\sqrt{4 - x}} dx$$

96%

101 rated

Answer

Now applying the earlier results, we can use the fundamental theorem of calculus and the integration we have conducted.

Given:

  • The integral equals λ0π2sin2θdθ\lambda \int_0^{\frac{\pi}{2}} \sin^2 \theta d\theta, where we know the integral value is half, contributing to:

sin2θdθ=θ214sin(2θ)\int \sin^2 \theta d\theta = \frac{\theta}{2} - \frac{1}{4} \sin(2\theta) Integrating 00 to π2\frac{\pi}{2} yields:

=π22=π4= \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4} Thus, λπ4=16π4=4π\lambda \frac{\pi}{4} = \frac{16\pi}{4} = 4\pi

The final expression can then be substituted back to form: x4xdx=4π+C\int \frac{x}{\sqrt{4 - x}} dx = 4\pi + C

In conclusion, in the form ax+bax + b, where a=4a = 4 and b=πb = \pi.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;