Photo AI

4. (i) Find \( \int \ln(x) \, dx \).\n\n(ii) Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^2(x) \, dx \). - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 8

Question icon

Question 6

4.-(i)-Find-\(-\int-\ln(x)-\,-dx-\).\n\n(ii)-Find-the-exact-value-of-\(-\int_{0}^{\frac{\pi}{2}}-\sin^2(x)-\,-dx-\).-Edexcel-A-Level Maths Pure-Question 6-2008-Paper 8.png

4. (i) Find \( \int \ln(x) \, dx \).\n\n(ii) Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^2(x) \, dx \).

Worked Solution & Example Answer:4. (i) Find \( \int \ln(x) \, dx \).\n\n(ii) Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^2(x) \, dx \). - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 8

Step 1

Find \( \int \ln(x) \, dx \)

96%

114 rated

Answer

To find ( \int \ln(x) , dx ), we can use integration by parts. Let:

  • ( u = \ln(x) ) (thus ( du = \frac{1}{x} , dx ))
  • ( dv = dx ) (thus ( v = x ))

Using the integration by parts formula:

[ \int u , dv = uv - \int v , du ]

we get:

[ \int \ln(x) , dx = x \ln(x) - \int x \cdot \frac{1}{x} , dx = x \ln(x) - \int 1 , dx = x \ln(x) - x + C ]

Thus, ( \int \ln(x) , dx = x \ln(x) - x + C ).

Step 2

Find the exact value of \( \int_{0}^{\frac{\pi}{2}} \sin^2(x) \, dx \)

99%

104 rated

Answer

To find ( \int_{0}^{\frac{\pi}{2}} \sin^2(x) , dx ), we can use the identity:

[ \sin^2(x) = \frac{1}{2} (1 - \cos(2x)) ]

Therefore, the integral becomes:

[ \int_{0}^{\frac{\pi}{2}} \sin^2(x) , dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos(2x)) , dx ]

Splitting this into two parts:

[ = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} 1 , dx - \int_{0}^{\frac{\pi}{2}} \cos(2x) , dx \right) ]

Calculating each integral:

  • The first integral is ( \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} ).
  • The second integral (using substitution or direct integration): [ \int \cos(2x) , dx = \frac{1}{2} \sin(2x) \Rightarrow \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{2}} = 0 ]

Combining these results:

[ = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4} ]

Thus, ( \int_{0}^{\frac{\pi}{2}} \sin^2(x) , dx = \frac{\pi}{4} ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;