Photo AI

6. (i) Find \[ \int xe^{x} \: dx \] (ii) Find \[ \int \frac{8}{(2x-1)^{3}} \: dx, \, x > \frac{1}{2} \] (iii) Given that \( y = \frac{\pi}{6} \) at \( x = 0 \), solve the differential equation \[ \frac{dy}{dx} = e^{x} \: \csc(2y) \: \csc(y) \] - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 7

Question icon

Question 8

6.-(i)-Find-\[-\int-xe^{x}-\:-dx-\]--(ii)-Find-\[-\int-\frac{8}{(2x-1)^{3}}-\:-dx,-\,-x->-\frac{1}{2}-\]--(iii)-Given-that-\(-y-=-\frac{\pi}{6}-\)-at-\(-x-=-0-\),-solve-the-differential-equation-\[-\frac{dy}{dx}-=-e^{x}-\:-\csc(2y)-\:-\csc(y)-\]-Edexcel-A-Level Maths Pure-Question 8-2014-Paper 7.png

6. (i) Find \[ \int xe^{x} \: dx \] (ii) Find \[ \int \frac{8}{(2x-1)^{3}} \: dx, \, x > \frac{1}{2} \] (iii) Given that \( y = \frac{\pi}{6} \) at \( x = 0 \), so... show full transcript

Worked Solution & Example Answer:6. (i) Find \[ \int xe^{x} \: dx \] (ii) Find \[ \int \frac{8}{(2x-1)^{3}} \: dx, \, x > \frac{1}{2} \] (iii) Given that \( y = \frac{\pi}{6} \) at \( x = 0 \), solve the differential equation \[ \frac{dy}{dx} = e^{x} \: \csc(2y) \: \csc(y) \] - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 7

Step 1

Find \( \int xe^{x} \: dx \)

96%

114 rated

Answer

To find ( \int xe^{x} : dx ), we will use integration by parts. Let

  • ( u = x ) and ( dv = e^{x} dx ), then ( du = dx ) and ( v = e^{x} ). By the integration by parts formula:

[ \int u , dv = uv - \int v , du ]

Substituting gives: [ \int xe^{x} : dx = xe^{x} - \int e^{x} : dx = xe^{x} - e^{x} + C = e^{x}(x - 1) + C ]

Step 2

Find \( \int \frac{8}{(2x-1)^{3}} \: dx, \, x > \frac{1}{2} \)

99%

104 rated

Answer

To solve this integral, we use the substitution method. Let

  • ( u = 2x - 1 ), then ( du = 2dx ) or ( dx = \frac{1}{2} du ).

When ( x = \frac{1}{2} ), ( u = 0 ). The integral becomes: [ \int \frac{8}{u^{3}} \cdot \frac{1}{2} du = 4 \int u^{-3} du ]

Now integrating gives: [ 4 \cdot \left(-\frac{1}{2u^{2}}\right) + C = -\frac{2}{(2x-1)^{2}} + C ]

Step 3

Given that \( y = \frac{\pi}{6} \) at \( x = 0 \), solve the differential equation \( \frac{dy}{dx} = e^{x} \: \csc(2y) \: \csc(y) \)

96%

101 rated

Answer

We start with the differential equation: [ \frac{dy}{dx} = e^{x} : \csc(2y) : \csc(y) ]

Separate the variables: [ \int \csc(2y) , \csc(y) , dy = \int e^{x} , dx ]

Integrating both sides, let: [ \int \csc(2y) , \csc(y) , dy \text{ (this can be derived with appropriate substitutions) } ]\

The right side integrates to ( e^{x} + C ).

Now applying the initial condition ( y(0) = \frac{\pi}{6} ) can help find the constant. After finding ( C ), the solution will be complete.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;