Photo AI

Figure 1 shows part of the curve $y = \frac{3}{\sqrt{1+4x}}$ - Edexcel - A-Level Maths Pure - Question 4 - 2009 - Paper 3

Question icon

Question 4

Figure-1-shows-part-of-the-curve-$y-=-\frac{3}{\sqrt{1+4x}}$-Edexcel-A-Level Maths Pure-Question 4-2009-Paper 3.png

Figure 1 shows part of the curve $y = \frac{3}{\sqrt{1+4x}}$. The region $R$ is bounded by the curve, the x-axis, and the lines $x = 0$ and $x = 2$, as shown shaded ... show full transcript

Worked Solution & Example Answer:Figure 1 shows part of the curve $y = \frac{3}{\sqrt{1+4x}}$ - Edexcel - A-Level Maths Pure - Question 4 - 2009 - Paper 3

Step 1

Use integration to find the area of R.

96%

114 rated

Answer

To find the area of the region RR, we will integrate the curve from x=0x = 0 to x=2x = 2:

A=0231+4xdxA = \int_0^2 \frac{3}{\sqrt{1+4x}} \, dx

  1. We start with the substitution. Let:

    u=1+4xu = 1 + 4x

    Thus, when x=0x = 0, u=1u = 1 and when x=2x = 2, u=9u = 9.

    The differential dx=14dudx = \frac{1}{4} du.

  2. Now substitute into the integral:

    A=193u14du=3419u12duA = \int_1^9 \frac{3}{\sqrt{u}} \cdot \frac{1}{4} \, du = \frac{3}{4} \int_1^9 u^{-\frac{1}{2}} \, du

  3. Evaluating the integral:

    34[2u12]19=34(2921)\frac{3}{4} [2u^{\frac{1}{2}}]_{1}^{9} = \frac{3}{4} \left(2 \sqrt{9} - 2 \sqrt{1}\right)

    =34(62)=344=3 units2= \frac{3}{4} (6 - 2) = \frac{3}{4} \cdot 4 = 3 \text{ units}^2

Step 2

Use integration to find the exact value of the volume of the solid formed.

99%

104 rated

Answer

To find the volume of the solid formed when the region RR is rotated about the x-axis, we will use the formula for the volume of revolution:

V=π02(31+4x)2dxV = \pi \int_0^2 \left(\frac{3}{\sqrt{1+4x}}\right)^2 \, dx

  1. Simplifying the expression:

    V=π0291+4xdxV = \pi \int_0^2 \frac{9}{1+4x} \, dx

  2. We will now apply the substitution method again:

    Let u=1+4xu = 1 + 4x, then dx=14dudx = \frac{1}{4} du. The limits change accordingly:

    When x=0,u=1x = 0, u = 1 and when x=2,u=9x = 2, u = 9.

    Therefore:

    V=π199u14du=9π419u1duV = \pi \int_1^9 \frac{9}{u} \cdot \frac{1}{4} \, du = \frac{9\pi}{4} \int_1^9 u^{-1} \, du

  3. Evaluating this integral:

    V=9π4[lnu]19=9π4(ln9ln1)=9π4ln9V = \frac{9\pi}{4} [\ln|u|]_{1}^{9} = \frac{9\pi}{4} (\ln 9 - \ln 1) = \frac{9\pi}{4} \ln 9

Finally, since ln1=0\\ln 1 = 0, we have:

V=9π4ln9 cubic unitsV = \frac{9\pi}{4} \ln 9 \text{ cubic units}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;