Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg)$, y = 3 ext{cos}2t, ext{ for } 0 ext{ } < t < 2 ext{π} - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 8

Question icon

Question 7

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4-ext{sin}igg(t-+--rac{-ext{π}}{6}igg)$,--y-=-3-ext{cos}2t,--ext{-for-}-0--ext{-}-<-t-<-2-ext{π}-Edexcel-A-Level Maths Pure-Question 7-2012-Paper 8.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg)$, y = 3 ext{cos}2t, ext{ for } 0 ext{ } < t < 2 ex... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg)$, y = 3 ext{cos}2t, ext{ for } 0 ext{ } < t < 2 ext{π} - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 8

Step 1

Find an expression for \( \frac{dy}{dx} \) in terms of t.

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we first need to find ( \frac{dx}{dt} ) and ( \frac{dy}{dt} ).

  1. Compute ( \frac{dx}{dt} ):

    [\frac{dx}{dt} = \frac{d}{dt}[4\text{sin}\bigg(t + \frac{\pi}{6}\bigg)] = 4\text{cos}\bigg(t + \frac{\pi}{6}\bigg)]

  2. Compute ( \frac{dy}{dt} ):

    [\frac{dy}{dt} = \frac{d}{dt}[3\text{cos}(2t)] = -6\text{sin}(2t)]

  3. Now, we can find ( \frac{dy}{dx} ):

    [\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6\text{sin}(2t)}{4\text{cos}\bigg(t +\frac{\pi}{6}\bigg)} = -\frac{3\text{sin}(2t)}{2\text{cos}\bigg(t +\frac{\pi}{6}\bigg)}]

Step 2

Find the coordinates of all the points on C where \( \frac{dy}{dx} = 0 \).

99%

104 rated

Answer

To find the points where ( \frac{dy}{dx} = 0 ), we set the numerator of ( \frac{dy}{dx} ) to zero:

  1. Set ( -6\text{sin}(2t) = 0 ):

    This gives ( \text{sin}(2t) = 0 ), hence:

    [2t = n\pi, \text{ where } n \text{ is an integer}]

    Therefore, [t = \frac{n\pi}{2}]

  2. The values of t in the interval ( 0 < t < 2\pi ) are ( t = \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi ).

  3. Now, compute the corresponding coordinates for each value:

    • For ( t = \frac{\pi}{2} ): [ x = 4\text{sin}\left(\frac{\pi}{2} + \frac{\pi}{6}\right) = 4\text{sin}\left(\frac{2\pi}{3}\right) = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} ] [ y = 3\text{cos}(\pi) = -3 \Rightarrow (x, y) = (2\sqrt{3}, -3)]

    • For ( t = \pi ): [ x = 4\text{sin}\left(\pi + \frac{\pi}{6}\right) = 4\text{sin}\left(\frac{7\pi}{6}\right) = -2]\ [ y = 3\text{cos}(2\pi) = 3 \Rightarrow (x, y) = (-2, 3)]

    • For ( t = \frac{3\pi}{2} ): [ x = 4\text{sin}\left(\frac{3\pi}{2} + \frac{\pi}{6}\right) = -2\sqrt{3}]\ [ y = 3\text{cos}(3\pi) = -3 \Rightarrow (x, y) = (-2\sqrt{3}, -3)]

    • For ( t = 2\pi ): [ x = 4\text{sin}\left(2\pi + \frac{\pi}{6}\right) = 2\sqrt{3}]\ [ y = 3\text{cos}(4\pi) = 3 \Rightarrow (x, y) = (2\sqrt{3}, 3)]

  4. Therefore, the coordinates of all the points on C where ( \frac{dy}{dx} = 0 ) are:

    • ( (2\sqrt{3}, -3) )
    • ( (-2, 3) )
    • ( (-2\sqrt{3}, -3) )
    • ( (2\sqrt{3}, 3) )

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;