Photo AI

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 5

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-with-equation-$y-=-x^3-\ln(x^2-+-2)$,-$x->-0$-Edexcel-A-Level Maths Pure-Question 6-2011-Paper 5.png

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x > 0$. The finite region $R$, shown shaded in Figure 2, is bounded by the curve, the $x$... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x > 0$ - Edexcel - A-Level Maths Pure - Question 6 - 2011 - Paper 5

Step 1

Complete the table above giving the missing values of $y$ to 4 decimal places.

96%

114 rated

Answer

To complete the table, we calculate the missing values of yy using the given equation y=x3ln(x2+2)y = x^3 \ln(x^2 + 2) for each corresponding value of xx.

  • For x=24x = \frac{\sqrt{2}}{4}:

    y=(24)3ln((24)2+2)=0.3240y = \left(\frac{\sqrt{2}}{4}\right)^3 \ln\left(\left(\frac{\sqrt{2}}{4}\right)^2 + 2\right) = 0.3240

  • For x=324x = \frac{3\sqrt{2}}{4}:

    y=(324)3ln((324)2+2)=1.3596y = \left(\frac{3\sqrt{2}}{4}\right)^3 \ln\left(\left(\frac{3\sqrt{2}}{4}\right)^2 + 2\right) = 1.3596

  • For x=22x = \frac{\sqrt{2}}{2}:

    y=(22)3ln((22)2+2)=3.9210y = \left(\frac{\sqrt{2}}{2}\right)^3 \ln\left(\left(\frac{\sqrt{2}}{2}\right)^2 + 2\right) = 3.9210

Step 2

Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving your answer to 2 decimal places.

99%

104 rated

Answer

To estimate the area using the trapezium rule, we apply the formula:

Area12h(y0+2y1+2y2+y3)\text{Area} \approx \frac{1}{2} h (y_0 + 2y_1 + 2y_2 + y_3)

where hh is the width of each interval and yiy_i are the corresponding yy values. Here:

  • h=240=24h = \frac{\sqrt{2}}{4} - 0 = \frac{\sqrt{2}}{4}
  • Values from the table are y0=0y_0 = 0, y1=0.3240y_1 = 0.3240, y2=1.3596y_2 = 1.3596, and y3=3.9210y_3 = 3.9210.

Thus:

Area12×24×(0+2×0.3240+2×1.3596+3.9210)\text{Area} \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} \times (0 + 2 \times 0.3240 + 2 \times 1.3596 + 3.9210)

Calculating this gives:

Area1.30\text{Area} \approx 1.30

Step 3

Use the substitution $u = x^2 + 2$ to show that the area of $R$ is $\frac{1}{2} \int_{2}^{4} (u - 2) \ln u \, du$.

96%

101 rated

Answer

Using the substitution u=x2+2u = x^2 + 2, we find:

dudx=2x    du=2xdx    dx=du2x\frac{du}{dx} = 2x \implies du = 2x \, dx \implies dx = \frac{du}{2x}

Now we need to change the limits:

  • When x=0x = 0, u=2u = 2.
  • When x=2x = \sqrt{2}, u=4u = 4.

Thus, the area A(R)A(R) can be expressed as:

A(R)=02ydx=02x3ln(x2+2)dxA(R) = \int_{0}^{\sqrt{2}} y \, dx = \int_{0}^{\sqrt{2}} x^3 \ln(x^2 + 2) \, dx

Substituting uu into the integral gives:

A(R)=24(u22lnu)du2=1224(u2)lnudu A(R) = \int_{2}^{4} \left(\frac{u-2}{2} \ln u \right) \frac{du}{2} = \frac{1}{2} \int_{2}^{4} (u - 2) \ln u \, du

Step 4

Hence, or otherwise, find the exact area of $R$.

98%

120 rated

Answer

To find the exact area of RR, we evaluate the integral:

A(R)=1224(u2)lnuduA(R) = \frac{1}{2} \int_{2}^{4} (u - 2) \ln u \, du.

To solve this, we break it down:

  1. Integrate using integration by parts, letting:
    • v=lnuv = \ln u and dw=(u2)dudw = (u - 2) du.

The solution yields:

A(R)=12[(u2)lnu(1)lnudu]24 A(R) = \frac{1}{2} \Bigg[ (u - 2) \ln u - \int (1) \ln u \, du \Bigg]_{2}^{4}

By evaluating this, we can find the exact area of RR.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;