Photo AI

Figure 1 shows the finite region R, which is bounded by the curve $y = xe^x$, the line $x = 1$, the line $x = 3$ and the x-axis - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 7

Question icon

Question 6

Figure-1-shows-the-finite-region-R,-which-is-bounded-by-the-curve-$y-=-xe^x$,-the-line-$x-=-1$,-the-line-$x-=-3$-and-the-x-axis-Edexcel-A-Level Maths Pure-Question 6-2006-Paper 7.png

Figure 1 shows the finite region R, which is bounded by the curve $y = xe^x$, the line $x = 1$, the line $x = 3$ and the x-axis. The region R is rotated through 360... show full transcript

Worked Solution & Example Answer:Figure 1 shows the finite region R, which is bounded by the curve $y = xe^x$, the line $x = 1$, the line $x = 3$ and the x-axis - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 7

Step 1

Use integration by parts to find the volume.

96%

114 rated

Answer

To find the volume of the solid generated by rotating region R around the x-axis, we use the formula:

ho imes ext{Volume} = ho imes rac{1}{2} \int_a^b f(x)^2 \, dx $$ First, we decide the function and the limits: the function is $f(x) = xe^x$ and the limits are from $x=1$ to $x=3$. So, volume can be expressed as: $$ V = \pi \int_{1}^{3} (xe^x)^2 \, dx $$ 2. Then, compute $ (xe^x)^2$: $$ V = \pi \int_{1}^{3} x^2 e^{2x} \, dx $$

Step 2

Evaluate the integral using integration by parts.

99%

104 rated

Answer

Using integration by parts, let:

  • u=x2u = x^2, hence du=2xdxdu = 2x \, dx
  • dv=e2xdxdv = e^{2x} \, dx, hence v=12e2xv = \frac{1}{2} e^{2x}.

Now apply the integration by parts formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substituting:

x2e2xdx=x212e2x12e2x2xdx\int x^2 e^{2x} \, dx = x^2 \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \cdot 2x \, dx

This simplifies to:

=12x2e2xxe2xdx= \frac{1}{2} x^2 e^{2x} - \int x e^{2x} \, dx

Step 3

Final calculation and limits substitution.

96%

101 rated

Answer

Now, we need to evaluate the integral xe2xdx\int x e^{2x} \, dx again using integration by parts:

Let:

  • u=xu = x, hence du=dxdu = dx
  • dv=e2xdxdv = e^{2x} \, dx, hence v=12e2xv = \frac{1}{2} e^{2x}.

Then,

xe2x  dx=x12e2x12e2x  dx\int x e^{2x} \; dx = x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \; dx

The integral of e2xe^{2x} is:

=12e2x= \frac{1}{2} e^{2x}

So combining the results:

xe2x  dx=12xe2x14e2x\int x e^{2x} \; dx = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x}

Putting this back, we find that:$

V = \pi \left[ \frac{1}{2} x^2 e^{2x} - (\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x}) \right]_{1}^{3}$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;