Photo AI

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|-----|----|----|----|----| | P(X = x) | 1/5 | a | 1/10 | a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Question icon

Question 3

The-discrete-random-variable-X-has-probability-distribution-given-by--|-x---|--1--|-0--|-1--|-2--|-3--|-|-----|-----|----|----|----|----|-|-P(X-=-x)-|-1/5-|-a--|-1/10-|-a--|-1/5-|--where-a-is-a-constant-Edexcel-A-Level Maths Statistics-Question 3-2010-Paper 2.png

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|-----|----|----|----|----| | P(X = x) | 1/5 | a | 1/1... show full transcript

Worked Solution & Example Answer:The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|-----|----|----|----|----| | P(X = x) | 1/5 | a | 1/10 | a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Step 1

Find the value of a.

96%

114 rated

Answer

To find the value of a, we use the fact that the sum of all probabilities must equal 1:

rac{1}{5} + a + rac{1}{10} + a + rac{1}{5} = 1

Combining like terms:

2a + rac{1}{5} + rac{1}{10} = 1

Rewriting rac{1}{5} as rac{2}{10} gives:

2a + rac{3}{10} = 1

Subtracting rac{3}{10} from both sides:

2a = 1 - rac{3}{10} = rac{7}{10}

Dividing both sides by 2 gives:

a = rac{7}{20} = 0.35.

Step 2

Write down E(X).

99%

104 rated

Answer

The expected value E(X) is calculated using the formula:

E(X)=extSumof(ximesP(X=x))E(X) = ext{Sum of } (x imes P(X = x))

Using the values found, we get:

E(X)=(1)15+0a+1110+2a+315E(X) = (-1) \cdot \frac{1}{5} + 0 \cdot a + 1 \cdot \frac{1}{10} + 2 \cdot a + 3 \cdot \frac{1}{5}

Substituting a=720a = \frac{7}{20}:

E(X)=(1)15+0+1110+2720+315E(X) = (-1) \cdot \frac{1}{5} + 0 + 1 \cdot \frac{1}{10} + 2 \cdot \frac{7}{20} + 3 \cdot \frac{1}{5}

Calculating it gives:

E(X)=0.2+0.1+0.7+0.6=1.2E(X) = -0.2 + 0.1 + 0.7 + 0.6 = 1.2

Step 3

Find Var(X).

96%

101 rated

Answer

To find the variance Var(X), use the formula:

Var(X)=E(X2)(E(X))2Var(X) = E(X^2) - (E(X))^2

We first calculate E(X^2):

E(X2)=(1)215+02a+12110+22a+3215E(X^2) = (-1)^2 \cdot \frac{1}{5} + 0^2 \cdot a + 1^2 \cdot \frac{1}{10} + 2^2 \cdot a + 3^2 \cdot \frac{1}{5}

Substituting the known values:

E(X2)=115+0+1110+4720+915E(X^2) = 1 \cdot \frac{1}{5} + 0 + 1 \cdot \frac{1}{10} + 4 \cdot \frac{7}{20} + 9 \cdot \frac{1}{5}

Calculating this gives:

E(X2)=0.2+0.1+1.4+1.8=3.5E(X^2) = 0.2 + 0.1 + 1.4 + 1.8 = 3.5

Now, calculating the variance:

Var(X)=3.5(1.2)2=3.51.44=2.06Var(X) = 3.5 - (1.2)^2 = 3.5 - 1.44 = 2.06

Step 4

Find Var(Y).

98%

120 rated

Answer

For the random variable Y=62XY = 6 - 2X, the variance can be found using:

Var(Y)=(2)2Var(X)=4Var(X).Var(Y) = (-2)^2 Var(X) = 4 Var(X).

With Var(X)=2.06Var(X) = 2.06, we have:

Var(Y)=42.06=8.24Var(Y) = 4 \cdot 2.06 = 8.24.

Step 5

Calculate P(X ≥ Y).

97%

117 rated

Answer

To calculate P(XY)P(X \,\geq\, Y), we determine the probability for each of the cases where XX is greater than or equal to the corresponding value of YY.

The values of YY occur when:

  • If X=0X = 0, then Y=62(0)=6Y = 6 - 2(0) = 6
  • If X=1X = 1, then Y=62(1)=4Y = 6 - 2(1) = 4
  • If X=2X = 2, then Y=62(2)=2Y = 6 - 2(2) = 2
  • If X=3X = 3, then Y=62(3)=0Y = 6 - 2(3) = 0

Calculating:

P(XY)=P(X=2)+P(X=3)P(X \geq Y) = P(X = 2) + P(X = 3)

Using the probability distribution, we find:

P(X=2)+P(X=3)=a+15=720+15=720+420=1120.P(X = 2) + P(X = 3) = a + \frac{1}{5} = \frac{7}{20} + \frac{1}{5} = \frac{7}{20} + \frac{4}{20} = \frac{11}{20}.

Thus,:

P(XY)=1120P(X \geq Y) = \frac{11}{20}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;