To find the variance of 7X−5, we use the property of variance:
Var(aX+b)=a2Var(X)
First, we need to calculate Var(X):
Var(X)=E(X2)−(E(X))2
We already found:
- E(X2)=14
- E(X)=2174
Now calculating:
Var(X)=14−(2174)2=14−4415476=4416174−5476=441698
Now plug into the variance formula:
Var(7X−5)=72Var(X)=49⋅441698=44134202≈77.6