Photo AI

The probability function of a discrete random variable X is given by p(x) = kx^2 where k is a positive constant - Edexcel - A-Level Maths Statistics - Question 5 - 2010 - Paper 1

Question icon

Question 5

The-probability-function-of-a-discrete-random-variable-X-is-given-by---p(x)-=-kx^2---where-k-is-a-positive-constant-Edexcel-A-Level Maths Statistics-Question 5-2010-Paper 1.png

The probability function of a discrete random variable X is given by p(x) = kx^2 where k is a positive constant. (a) Show that k = \frac{1}{14} Find (b) P(... show full transcript

Worked Solution & Example Answer:The probability function of a discrete random variable X is given by p(x) = kx^2 where k is a positive constant - Edexcel - A-Level Maths Statistics - Question 5 - 2010 - Paper 1

Step 1

Show that k = \frac{1}{14}

96%

114 rated

Answer

To find the value of k, we need to ensure that the total probability sums to 1. Thus, we calculate:

x=13p(x)=p(1)+p(2)+p(3)=k(12)+k(22)+k(32)=k(1+4+9)=k(14).\sum_{x=1}^3 p(x) = p(1) + p(2) + p(3) = k(1^2) + k(2^2) + k(3^2) = k(1 + 4 + 9) = k(14).

Setting this equal to 1 gives us:

k(14)=1k=114.k(14) = 1 \Rightarrow k = \frac{1}{14}.

Step 2

P(X > 2)

99%

104 rated

Answer

To find P(X > 2), we can express the probability as:

P(X>2)=1P(X=1)P(X=2).P(X > 2) = 1 - P(X = 1) - P(X = 2).

Calculating the individual probabilities:

  • For X = 1:
    p(1)=k(12)=114(1)=114.p(1) = k(1^2) = \frac{1}{14}(1) = \frac{1}{14}.
  • For X = 2:
    p(2)=k(22)=114(4)=414.p(2) = k(2^2) = \frac{1}{14}(4) = \frac{4}{14}.
  • For X = 3:
    p(3)=k(32)=114(9)=914.p(3) = k(3^2) = \frac{1}{14}(9) = \frac{9}{14}.

Now substituting these values:

P(X>2)=1114414=1514=9140.92857.P(X > 2) = 1 - \frac{1}{14} - \frac{4}{14} = 1 - \frac{5}{14} = \frac{9}{14} \approx 0.92857.

Step 3

E(X)

96%

101 rated

Answer

To calculate the expected value E(X), we use the formula:

E(X)=x=13xp(x)=1p(1)+2p(2)+3p(3).E(X) = \sum_{x=1}^3 x p(x) = 1 \cdot p(1) + 2 \cdot p(2) + 3 \cdot p(3). Substituting the probabilities:

=1114+2414+3914=114+814+2714=3614=1872.57143.= 1 \cdot \frac{1}{14} + 2 \cdot \frac{4}{14} + 3 \cdot \frac{9}{14} = \frac{1}{14} + \frac{8}{14} + \frac{27}{14} = \frac{36}{14} = \frac{18}{7} \approx 2.57143.

Step 4

Var(1 - X)

98%

120 rated

Answer

To find Var(1 - X), we embrace the property of variance:

Var(1X)=Var(X).Var(1 - X) = Var(X). We calculate Var(X) using its definition:

Calculating E(X^2):

E(X2)=12p(1)+22p(2)+32p(3)=1114+4414+9914.E(X^2) = 1^2 \cdot p(1) + 2^2 \cdot p(2) + 3^2 \cdot p(3) = 1 \cdot \frac{1}{14} + 4 \cdot \frac{4}{14} + 9 \cdot \frac{9}{14}.

Thus,

E(X2)=114+1614+8114=9814=7.E(X^2) = \frac{1}{14} + \frac{16}{14} + \frac{81}{14} = \frac{98}{14} = 7.

Then,

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;