Photo AI

The discrete random variable $X$ has the probability distribution \[\begin{array}{|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline P(X = x) & k & 2k & 3k & 4k \\ \hline \end{array}\] (a) Show that $k = 0.1$ - Edexcel - A-Level Maths Statistics - Question 6 - 2011 - Paper 1

Question icon

Question 6

The-discrete-random-variable-$X$-has-the-probability-distribution--\[\begin{array}{|c|c|}-\hline-x-&-1-&-2-&-3-&-4-\\-\hline-P(X-=-x)-&-k-&-2k-&-3k-&-4k-\\-\hline-\end{array}\]--(a)-Show-that-$k-=-0.1$-Edexcel-A-Level Maths Statistics-Question 6-2011-Paper 1.png

The discrete random variable $X$ has the probability distribution \[\begin{array}{|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline P(X = x) & k & 2k & 3k & 4k \\ \hline \e... show full transcript

Worked Solution & Example Answer:The discrete random variable $X$ has the probability distribution \[\begin{array}{|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline P(X = x) & k & 2k & 3k & 4k \\ \hline \end{array}\] (a) Show that $k = 0.1$ - Edexcel - A-Level Maths Statistics - Question 6 - 2011 - Paper 1

Step 1

Show that $k = 0.1$

96%

114 rated

Answer

To determine the value of kk, we utilize the property that the sum of all probabilities must equal 1:

k+2k+3k+4k=1k + 2k + 3k + 4k = 1

This simplifies to:

10k=110k = 1

Hence,

k=0.1k = 0.1

Step 2

Find $E(X)$

99%

104 rated

Answer

The expected value of XX can be calculated as follows:

E(X)=1k+22k+33k+44kE(X) = 1 \cdot k + 2 \cdot 2k + 3 \cdot 3k + 4 \cdot 4k

Substituting in the value of k=0.1k = 0.1:

E(X)=10.1+20.2+30.3+40.4E(X) = 1 \cdot 0.1 + 2 \cdot 0.2 + 3 \cdot 0.3 + 4 \cdot 0.4

Calculating this gives:

E(X)=0.1+0.4+0.9+1.6=3E(X) = 0.1 + 0.4 + 0.9 + 1.6 = 3

Step 3

Find $E(X^2)$

96%

101 rated

Answer

The expected value of X2X^2 is computed as:

E(X2)=12k+222k+323k+424kE(X^2) = 1^2 \cdot k + 2^2 \cdot 2k + 3^2 \cdot 3k + 4^2 \cdot 4k

With k=0.1k = 0.1:

E(X2)=10.1+40.2+90.3+160.4E(X^2) = 1 \cdot 0.1 + 4 \cdot 0.2 + 9 \cdot 0.3 + 16 \cdot 0.4

Calculating this gives:

E(X2)=0.1+0.8+2.7+6.4=10E(X^2) = 0.1 + 0.8 + 2.7 + 6.4 = 10

Step 4

Find $Var(2 - 5X)$

98%

120 rated

Answer

To find the variance of 25X2 - 5X, we use the formula for variance:

Var(aX+b)=a2Var(X)Var(aX + b) = a^2 Var(X)

First, we need to find Var(X)Var(X):

Var(X)=E(X2)(E(X))2Var(X) = E(X^2) - (E(X))^2

Substituting our previous results:

Var(X)=1032=109=1Var(X) = 10 - 3^2 = 10 - 9 = 1

Thus,

Var(25X)=25Var(X)=251=25Var(2 - 5X) = 25 \cdot Var(X) = 25 \cdot 1 = 25

Step 5

Show that $P(X_1 + X_2 = 4) = 0.1$

97%

117 rated

Answer

To find P(X1+X2=4)P(X_1 + X_2 = 4), we identify pairs (X1,X2)(X_1, X_2) that sum to 4:

  • (1,3)(1,3)
  • (2,2)(2,2)
  • (3,1)(3,1)

The probabilities for these pairs are:

P(1)P(3)+P(2)P(2)+P(3)P(1)P(1) \cdot P(3) + P(2) \cdot P(2) + P(3) \cdot P(1)

Calculating:

0.10.3+0.20.2+0.30.1=0.03+0.04+0.03=0.10.1 \cdot 0.3 + 0.2 \cdot 0.2 + 0.3 \cdot 0.1 = 0.03 + 0.04 + 0.03 = 0.1

Step 6

Complete the probability distribution table for $X_1 + X_2$

97%

121 rated

Answer

The completed probability distribution table is as follows:

[\begin{array}{|c|c|} \hline y & P(X_1 + X_2 = y) \ \hline 2 & 0.01 \ 3 & 0.04 \ 4 & 0.10 \ 5 & 0.30 \ 6 & 0.20 \ 7 & 0.06 \ 8 & 0.24 \ \hline \end{array}]

Step 7

Find $P(1.5 < X_1 + X_2 < 3.5)$

96%

114 rated

Answer

To find the probability that 1.5<X1+X2<3.51.5 < X_1 + X_2 < 3.5, we consider the relevant values of yy:

  • For y=2y = 2, P(X1+X2=2)=0.01P(X_1 + X_2 = 2) = 0.01
  • For y=3y = 3, P(X1+X2=3)=0.04P(X_1 + X_2 = 3) = 0.04

Thus,

P(1.5<X1+X2<3.5)=P(X1+X2=2)+P(X1+X2=3)=0.01+0.04=0.05P(1.5 < X_1 + X_2 < 3.5) = P(X_1 + X_2 = 2) + P(X_1 + X_2 = 3) = 0.01 + 0.04 = 0.05

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;