Photo AI

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|-----|-----|-----|-----| | P(X = x) | 1/5 | a | 1/10| a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Question icon

Question 3

The-discrete-random-variable-X-has-probability-distribution-given-by--|-x---|--1---|-0---|-1---|-2---|-3---|-|-----|------|-----|-----|-----|-----|-|-P(X-=-x)-|-1/5-|-a---|-1/10|-a---|-1/5-|--where-a-is-a-constant-Edexcel-A-Level Maths Statistics-Question 3-2010-Paper 2.png

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|-----|-----|-----|-----| | P(X = x) | 1/5 ... show full transcript

Worked Solution & Example Answer:The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|-----|-----|-----|-----| | P(X = x) | 1/5 | a | 1/10| a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Step 1

Find the value of a.

96%

114 rated

Answer

To find the value of a, we will use the property that the total probability must equal 1.

Thus, we can set up the equation:

rac{1}{5} + a + rac{1}{10} + a + rac{1}{5} = 1

Combining the fractions:

rac{1}{5} + rac{1}{5} = rac{2}{5}

So,

rac{2}{5} + 2a + rac{1}{10} = 1

Converting 25\frac{2}{5} into tenths gives:

410+2a+110=1\frac{4}{10} + 2a + \frac{1}{10} = 1

Combining gives:

510+2a=1\frac{5}{10} + 2a = 1

Thus:

2a=1510=510=122a = 1 - \frac{5}{10} = \frac{5}{10} = \frac{1}{2}

So,

a=14=0.25a = \frac{1}{4} = 0.25

Step 2

Write down E(X).

99%

104 rated

Answer

We calculate the expected value E(X) using the formula:

E(X)=(xP(X=x))E(X) = \sum (x \cdot P(X = x))

Now substituting the values:

E(X)=115+014+1110+214+315E(X) = -1 \cdot \frac{1}{5} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{10} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{5}

Calculating it step by step:

  • 15-\frac{1}{5}
  • 00
  • +110+\frac{1}{10}
  • +12+\frac{1}{2}
  • +35+\frac{3}{5}

Combining gives:

E(X)=15+110+510=210+110+510=410=0.4E(X) = -\frac{1}{5} + \frac{1}{10} + \frac{5}{10} = -\frac{2}{10} + \frac{1}{10} + \frac{5}{10} = \frac{4}{10} = 0.4

Step 3

Find Var(X).

96%

101 rated

Answer

The variance Var(X) is calculated using:

Var(X)=E(X2)(E(X))2Var(X) = E(X^2) - (E(X))^2

First, we calculate E(X²):

E(X2)=(x2P(X=x))E(X^2) = \sum (x^2 \cdot P(X = x))

This results in:

E(X2)=(1)215+0214+12110+2214+3215E(X^2) = (-1)^2 \cdot \frac{1}{5} + 0^2 \cdot \frac{1}{4} + 1^2 \cdot \frac{1}{10} + 2^2 \cdot \frac{1}{4} + 3^2 \cdot \frac{1}{5}

Calculating:

  • 15\frac{1}{5}
  • 00
  • +110+\frac{1}{10}
  • +1=414=1+1 = 4 \cdot \frac{1}{4} = 1
  • +95+\frac{9}{5}

Combining gives:

E(X2)=15+110+1+95 =210+1010+1810=3010=3E(X^2) = \frac{1}{5} + \frac{1}{10} + 1 + \frac{9}{5}\ = \frac{2}{10} + \frac{10}{10} + \frac{18}{10} = \frac{30}{10} = 3

Now, substitute back into the variance formula:

Var(X)=3(E(X))2=30.42=30.16=2.84Var(X) = 3 - (E(X))^2 = 3 - 0.4^2 = 3 - 0.16 = 2.84

Step 4

Find Var(Y).

98%

120 rated

Answer

To find Var(Y), we use the transformation rule:

Y=62XY = 6 - 2X

The variance of a linear transformation is given by:

Var(Y)=4Var(X)Var(Y) = 4 Var(X)

Using our previously calculated Var(X)Var(X):

Var(Y)=42.84=11.36Var(Y) = 4 \cdot 2.84 = 11.36

Step 5

Calculate P(X ≥ Y).

97%

117 rated

Answer

To calculate P(XY)P(X \geq Y), we need to consider when Y = 6 - 2X\. Therefore, the probabilities must be evaluated for the conditions.

So we analyze:

  1. When X=1Y=4X = 1 \Rightarrow Y = 4, thus P(X4)P(X \geq 4)
  2. When X=2Y=2X = 2 \Rightarrow Y = 2, thus P(X2)P(X \geq 2)
  3. When X=3Y=0X = 3 \Rightarrow Y = 0, thus P(X0)P(X \geq 0)

Hence, we summarize:

  • From our probability distribution:
    • P(X = 1) = 1/10
    • P(X = 2) = a = 1/4
    • P(X = 3) = 1/5

And calculate:

P(X2)=P(X=2)+P(X=3)=14+15=520+420=920P(X \geq 2) = P(X = 2) + P(X = 3) = \frac{1}{4} + \frac{1}{5} = \frac{5}{20} + \frac{4}{20} = \frac{9}{20}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;