Photo AI

Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left( \frac{4}{3} \right)^{\frac{2}{3}} \right)$$ You must show all your working. - Edexcel - GCSE Maths - Question 19 - 2022 - Paper 1

Question icon

Question 19

Work-out-the-value-of--$$\left(-\frac{5^{\frac{4}{9}}}{2^{-1}}-\times-\left(-\frac{4}{3}-\right)^{\frac{2}{3}}-\right)$$--You-must-show-all-your-working.-Edexcel-GCSE Maths-Question 19-2022-Paper 1.png

Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left( \frac{4}{3} \right)^{\frac{2}{3}} \right)$$ You must show all your working.

Worked Solution & Example Answer:Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left( \frac{4}{3} \right)^{\frac{2}{3}} \right)$$ You must show all your working. - Edexcel - GCSE Maths - Question 19 - 2022 - Paper 1

Step 1

Step 1: Simplify the Expression

96%

114 rated

Answer

To solve the expression, we need to simplify it step-by-step. The expression is:

(54921×(43)23)\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left( \frac{4}{3} \right)^{\frac{2}{3}} \right)

We can rewrite 212^{-1} as rac{1}{2}, leading to:

54912=5492\frac{5^{\frac{4}{9}}}{\frac{1}{2}} = 5^{\frac{4}{9}} \cdot 2

Step 2

Step 2: Rewrite the Fractional Power

99%

104 rated

Answer

Next, we simplify \\left( \frac{4}{3} \right)^{\frac{2}{3}}:

(43)23=423323\left( \frac{4}{3} \right)^{\frac{2}{3}} = \frac{4^{\frac{2}{3}}}{3^{\frac{2}{3}}}

Calculating 4234^{\frac{2}{3}} gives:

423=(22)23=2434^{\frac{2}{3}} = (2^2)^{\frac{2}{3}} = 2^{\frac{4}{3}}

Step 3

Step 3: Combine the Results

96%

101 rated

Answer

Now substituting back we have:

(5492)243323\left( 5^{\frac{4}{9}} \cdot 2 \right) \cdot \frac{2^{\frac{4}{3}}}{3^{\frac{2}{3}}}

This simplifies further to:

54921+43323=549273323\frac{5^{\frac{4}{9}} \cdot 2^{1 + \frac{4}{3}}}{3^{\frac{2}{3}}} = \frac{5^{\frac{4}{9}} \cdot 2^{\frac{7}{3}}}{3^{\frac{2}{3}}}

Step 4

Step 4: Final Calculation

98%

120 rated

Answer

Having completed the simplification, we assess if we can express this in a simpler form or compute an approximate numerical answer. However, in its current form, the answer remains:

549273323\frac{5^{\frac{4}{9}} \cdot 2^{\frac{7}{3}}}{3^{\frac{2}{3}}}

Thus, this expression represents the final value.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;