Photo AI

For the expansion of $(2x + 1)^3$ and $(2x - 2)^3$, if all terms are correct with or without signs (and no additional terms), 3 or 4 terms correct with signs, $$ (2x + 1)^3 = 8x^3 + 12x^2 + 6x + 1 $$ or for correct expression after the expansion: $$ (2x - 2)^3 = 8x^3 - 12x^2 + 12x - 8 $$ or for correct expression after expansion: $$ = (2x)^3 - 3(2x)^2(2) + 3(2x)(2^2) - (2)^3 $$ or $(x^2 - 2)(x^2 + 2)$ where relevant - Edexcel - GCSE Maths - Question 16 - 2022 - Paper 1

Question icon

Question 16

For-the-expansion-of-$(2x-+-1)^3$-and-$(2x---2)^3$,-if-all-terms-are-correct-with-or-without-signs-(and-no-additional-terms),-3-or-4-terms-correct-with-signs,--$$-(2x-+-1)^3-=-8x^3-+-12x^2-+-6x-+-1-$$--or-for-correct-expression-after-the-expansion:--$$-(2x---2)^3-=-8x^3---12x^2-+-12x---8-$$--or-for-correct-expression-after-expansion:--$$-=-(2x)^3---3(2x)^2(2)-+-3(2x)(2^2)---(2)^3-$$--or-$(x^2---2)(x^2-+-2)$-where-relevant-Edexcel-GCSE Maths-Question 16-2022-Paper 1.png

For the expansion of $(2x + 1)^3$ and $(2x - 2)^3$, if all terms are correct with or without signs (and no additional terms), 3 or 4 terms correct with signs, $$ (2... show full transcript

Worked Solution & Example Answer:For the expansion of $(2x + 1)^3$ and $(2x - 2)^3$, if all terms are correct with or without signs (and no additional terms), 3 or 4 terms correct with signs, $$ (2x + 1)^3 = 8x^3 + 12x^2 + 6x + 1 $$ or for correct expression after the expansion: $$ (2x - 2)^3 = 8x^3 - 12x^2 + 12x - 8 $$ or for correct expression after expansion: $$ = (2x)^3 - 3(2x)^2(2) + 3(2x)(2^2) - (2)^3 $$ or $(x^2 - 2)(x^2 + 2)$ where relevant - Edexcel - GCSE Maths - Question 16 - 2022 - Paper 1

Step 1

For the expansion of $(2x + 1)^3$ and $(2x - 2)^3$, if all terms are correct with or without signs (and no additional terms), 3 or 4 terms correct with signs

96%

114 rated

Answer

To find the expansion

  1. Utilize the binomial theorem: (a+b)n=k=0nC(n,k)ankbk(a + b)^n = \sum_{k=0}^{n} C(n, k) a^{n-k} b^k where C(n,k)C(n, k) is the binomial coefficient.

  2. For the expansion of (2x+1)3(2x + 1)^3: =C(3,0)(2x)3(1)0+C(3,1)(2x)2(1)1+C(3,2)(2x)1(1)2+C(3,3)(1)3= C(3, 0) (2x)^3 (1)^0 + C(3, 1) (2x)^2 (1)^1 + C(3, 2) (2x)^1 (1)^2 + C(3, 3) (1)^3 =8x3+12x2+6x+1= 8x^3 + 12x^2 + 6x + 1

  3. For (2x2)3(2x - 2)^3: =C(3,0)(2x)3(2)0+C(3,1)(2x)2(2)1+C(3,2)(2x)1(2)2+C(3,3)(2)3= C(3, 0) (2x)^3 (-2)^0 + C(3, 1) (2x)^2 (-2)^1 + C(3, 2) (2x)^1 (-2)^2 + C(3, 3) (-2)^3 =8x312x2+12x8= 8x^3 - 12x^2 + 12x - 8

Thus, both expansions are provided correctly.

Step 2

Yes (supported)

99%

104 rated

Answer

For my explanation:

  1. Consider the expression for the values of xx.
  2. If x2=6x^2 = 6, we note that this holds for odd numbers.
  3. Any positive integer value of xx makes the right-hand side a multiple of 4.

Thus, the relationship is established.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;